These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22408447)

  • 1. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences.
    Zhao X; Ma Z; Yin M
    Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information.
    Ali F; Akbar S; Ghulam A; Maher ZA; Unar A; Talpur DB
    Comput Biol Med; 2021 Dec; 139():105006. PubMed ID: 34749096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition.
    He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ
    J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Effective Antifreeze Protein Predictor with Ensemble Classifiers and Comprehensive Sequence Descriptors.
    Yang R; Zhang C; Gao R; Zhang L
    Int J Mol Sci; 2015 Sep; 16(9):21191-214. PubMed ID: 26370959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties.
    Kandaswamy KK; Chou KC; Martinetz T; Möller S; Suganthan PN; Sridharan S; Pugalenthi G
    J Theor Biol; 2011 Feb; 270(1):56-62. PubMed ID: 21056045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC.
    Xiao X; Hui M; Liu Z
    J Membr Biol; 2016 Dec; 249(6):845-854. PubMed ID: 27812737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFP-SPTS: An Accurate Prediction of Antifreeze Proteins Using Sequential and Pseudo-Tri-Slicing Evolutionary Features with an Extremely Randomized Tree.
    Khan A; Uddin J; Ali F; Kumar H; Alghamdi W; Ahmad A
    J Chem Inf Model; 2023 Feb; 63(3):826-834. PubMed ID: 36649569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of bioluminescent proteins using auto covariance transformation of evolutional profiles.
    Zhao X; Li J; Huang Y; Ma Z; Yin M
    Int J Mol Sci; 2012; 13(3):3650-3660. PubMed ID: 22489173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation.
    Xu R; Zhou J; Wang H; He Y; Wang X; Liu B
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S10. PubMed ID: 25708928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.
    An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP
    Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RAFP-Pred: Robust Prediction of Antifreeze Proteins Using Localized Analysis of n-Peptide Compositions.
    Khan S; Naseem I; Togneri R; Bennamoun M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):244-250. PubMed ID: 28113406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.
    An JY; You ZH; Meng FR; Xu SJ; Wang Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation.
    Li Y; Wang Z; You ZH; Li LP; Hu X
    Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information.
    An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF
    Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of antifreeze proteins and their functional residues by support vector machine and genetic algorithms based on n-peptide compositions.
    Yu CS; Lu CH
    PLoS One; 2011; 6(5):e20445. PubMed ID: 21655262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.
    Suresh V; Parthasarathy S
    Protein Pept Lett; 2014; 21(8):736-42. PubMed ID: 23855661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IDRBP-PPCT: Identifying Nucleic Acid-Binding Proteins Based on Position-Specific Score Matrix and Position-Specific Frequency Matrix Cross Transformation.
    Wang N; Zhang J; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2284-2293. PubMed ID: 33780341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An insight into the molecular basis for convergent evolution in fish antifreeze Proteins.
    Nath A; Chaube R; Subbiah K
    Comput Biol Med; 2013 Aug; 43(7):817-21. PubMed ID: 23746722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting antifreeze proteins with weighted generalized dipeptide composition and multi-regression feature selection ensemble.
    Wang S; Deng L; Xia X; Cao Z; Fei Y
    BMC Bioinformatics; 2021 Jun; 22(Suppl 3):340. PubMed ID: 34162327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.