These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 22408447)
21. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information. Cheng CW; Su EC; Hwang JK; Sung TY; Hsu WL BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S6. PubMed ID: 19091029 [TBL] [Abstract][Full Text] [Related]
22. Prediction of membrane transport proteins and their substrate specificities using primary sequence information. Mishra NK; Chang J; Zhao PX PLoS One; 2014; 9(6):e100278. PubMed ID: 24968309 [TBL] [Abstract][Full Text] [Related]
23. Subcellular localization prediction of apoptosis proteins based on evolutionary information and support vector machine. Xiang Q; Liao B; Li X; Xu H; Chen J; Shi Z; Dai Q; Yao Y Artif Intell Med; 2017 May; 78():41-46. PubMed ID: 28764871 [TBL] [Abstract][Full Text] [Related]
24. Structure and application of antifreeze proteins from Antarctic bacteria. Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139 [TBL] [Abstract][Full Text] [Related]
25. AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs. Usman M; Khan S; Lee JA Sci Rep; 2020 Apr; 10(1):7197. PubMed ID: 32345989 [TBL] [Abstract][Full Text] [Related]
26. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569 [TBL] [Abstract][Full Text] [Related]
27. Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC. Zhang S; Duan X J Theor Biol; 2018 Jan; 437():239-250. PubMed ID: 29100918 [TBL] [Abstract][Full Text] [Related]
28. Prediction of antifreeze proteins using machine learning. Khan A; Uddin J; Ali F; Ahmad A; Alghushairy O; Banjar A; Daud A Sci Rep; 2022 Nov; 12(1):20672. PubMed ID: 36450775 [TBL] [Abstract][Full Text] [Related]
30. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information. Ali F; Ahmed S; Swati ZNK; Akbar S J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959 [TBL] [Abstract][Full Text] [Related]
31. Subcellular location prediction of apoptosis proteins using two novel feature extraction methods based on evolutionary information and LDA. Du L; Meng Q; Chen Y; Wu P BMC Bioinformatics; 2020 May; 21(1):212. PubMed ID: 32448129 [TBL] [Abstract][Full Text] [Related]
32. Identification of DNA-binding proteins using support vector machines and evolutionary profiles. Kumar M; Gromiha MM; Raghava GP BMC Bioinformatics; 2007 Nov; 8():463. PubMed ID: 18042272 [TBL] [Abstract][Full Text] [Related]
33. Accurate Prediction of Antifreeze Protein from Sequences through Natural Language Text Processing and Interpretable Machine Learning Approaches. Dhibar S; Jana B J Phys Chem Lett; 2023 Dec; 14(48):10727-10735. PubMed ID: 38009833 [TBL] [Abstract][Full Text] [Related]
34. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940 [TBL] [Abstract][Full Text] [Related]
35. Hyperactive antifreeze protein from fish contains multiple ice-binding sites. Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917 [TBL] [Abstract][Full Text] [Related]
36. PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction. Dehzangi A; López Y; Lal SP; Taherzadeh G; Michaelson J; Sattar A; Tsunoda T; Sharma A J Theor Biol; 2017 Jul; 425():97-102. PubMed ID: 28483566 [TBL] [Abstract][Full Text] [Related]
37. Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. Wang L; You ZH; Xia SX; Liu F; Chen X; Yan X; Zhou Y J Theor Biol; 2017 Apr; 418():105-110. PubMed ID: 28088356 [TBL] [Abstract][Full Text] [Related]
38. Biophysical and biochemical aspects of antifreeze proteins: Using computational tools to extract atomistic information. Kar RK; Bhunia A Prog Biophys Mol Biol; 2015 Nov; 119(2):194-204. PubMed ID: 26362837 [TBL] [Abstract][Full Text] [Related]
39. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904 [TBL] [Abstract][Full Text] [Related]
40. Prediction of oxidoreductase subfamily classes based on RFE-SND-CC-PSSM and machine learning methods. Yuan F; Liu G; Yang X; Wang S; Wang X J Bioinform Comput Biol; 2019 Aug; 17(4):1950029. PubMed ID: 31617464 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]