BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22408455)

  • 1. Expression patterns of genes involved in the defense and stress response of Spiroplasma citri infected Madagascar Periwinkle Catharanthus roseus.
    Nejat N; Vadamalai G; Dickinson M
    Int J Mol Sci; 2012; 13(2):2301-2313. PubMed ID: 22408455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First Report of Spiroplasma citri (-Induced) Associated with Periwinkle Lethal Yellows in Southeast Asia.
    Nejat N; Vadamalai G; Sijam K; Dickinson M
    Plant Dis; 2011 Oct; 95(10):1312. PubMed ID: 30731679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenicity of Aster Yellows Phytoplasma and Spiroplasma citri on Periwinkle.
    Chang CJ
    Phytopathology; 1998 Dec; 88(12):1347-50. PubMed ID: 18944838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles.
    André A; Maucourt M; Moing A; Rolin D; Renaudin J
    Mol Plant Microbe Interact; 2005 Jan; 18(1):33-42. PubMed ID: 15672816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiroplasma citri-induced lethal wilting of periwinkles is prevented by prior or simultaneous infection of the periwinkle by an MLO.
    Saillard C; Vignault JC; Fos A; Bové JM
    Ann Microbiol (Paris); 1984; 135A(1):163-8. PubMed ID: 6712060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression profiling of phytoplasma-infected Madagascar periwinkle leaves using differential display.
    De Luca V; Capasso C; Capasso A; Pastore M; Carginale V
    Mol Biol Rep; 2011 Jun; 38(5):2993-3000. PubMed ID: 20127177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of Spiroplasma citri surface protein genes in the plant and insect hosts.
    Dubrana MP; Béven L; Arricau-Bouvery N; Duret S; Claverol S; Renaudin J; Saillard C
    BMC Microbiol; 2016 Mar; 16():53. PubMed ID: 27005573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission of different isolates of Spiroplasma citri to carrot and citrus by Circulifer tenellus (Hemiptera: Cicadellidae).
    Mello AF; Wayadande AC; Yokomi RK; Fletcher J
    J Econ Entomol; 2009 Aug; 102(4):1417-22. PubMed ID: 19736751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants.
    Srivastava S; Pandey R; Kumar S; Nautiyal CS
    Protoplasma; 2014 Nov; 251(6):1307-20. PubMed ID: 24658891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and epigenetic changes in phytoplasma-recovered periwinkle after indole-3-butyric acid treatment.
    Leljak-Levanić D; Ježić M; Cesar V; Ludwig-Müller J; Lepeduš H; Mladinić M; Katić M; Curković-Perica M
    J Appl Microbiol; 2010 Dec; 109(6):2069-78. PubMed ID: 20796083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus.
    Singh SK; Patra B; Paul P; Liu Y; Pattanaik S; Yuan L
    Plant Sci; 2020 Apr; 293():110408. PubMed ID: 32081258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of a new plant-pathogenic spiroplasma.
    Saillard C; Vignault JC; Gadeau A; Carle P; Garnier M; Fos A; Bove JM; Tully JG; Whitcomb RF
    Isr J Med Sci; 1984 Oct; 20(10):1013-5. PubMed ID: 6511310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production.
    Sun J; Peebles CA
    Protoplasma; 2016 Sep; 253(5):1255-64. PubMed ID: 26351111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite Signature and Differential Expression of Genes in Washington Navel Oranges (
    McNeil CJ; Araujo K; Godfrey K; Slupsky CM
    Phytopathology; 2023 Feb; 113(2):299-308. PubMed ID: 35984373
    [No Abstract]   [Full Text] [Related]  

  • 15. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.
    Pan YJ; Liu J; Guo XR; Zu YG; Tang ZH
    Protoplasma; 2015 May; 252(3):813-24. PubMed ID: 25344654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq.
    Sun J; Manmathan H; Sun C; Peebles CA
    BMC Plant Biol; 2016 May; 16(1):108. PubMed ID: 27154243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection.
    Liu LY; Tseng HI; Lin CP; Lin YY; Huang YH; Huang CK; Chang TH; Lin SS
    Plant Cell Physiol; 2014 May; 55(5):942-57. PubMed ID: 24492256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes.
    Su YT; Chen JC; Lin CP
    Mol Plant Microbe Interact; 2011 Dec; 24(12):1502-12. PubMed ID: 21864044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment.
    Soltani N; Nazarian-Firouzabadi F; Shafeinia A; Sadr AS; Shirali M
    Mol Biol Rep; 2020 Sep; 47(9):7009-7016. PubMed ID: 32886329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don.
    Dutta A; Batra J; Pandey-Rai S; Singh D; Kumar S; Sen J
    Planta; 2005 Jan; 220(3):376-83. PubMed ID: 15714355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.