These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22408601)

  • 21. Neural control of finger movement via intracortical brain-machine interface.
    Irwin ZT; Schroeder KE; Vu PP; Bullard AJ; Tat DM; Nu CS; Vaskov A; Nason SR; Thompson DE; Bentley JN; Patil PG; Chestek CA
    J Neural Eng; 2017 Dec; 14(6):066004. PubMed ID: 28722685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Context-dependent relationship in high-resolution micro-ECoG studies during finger movements.
    Kuo CH; Blakely TM; Wander JD; Sarma D; Wu J; Casimo K; Weaver KE; Ojemann JG
    J Neurosurg; 2020 May; 132(5):1358-1366. PubMed ID: 31026831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decoding natural grasp types from human ECoG.
    Pistohl T; Schulze-Bonhage A; Aertsen A; Mehring C; Ball T
    Neuroimage; 2012 Jan; 59(1):248-60. PubMed ID: 21763434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals.
    Farrokhi B; Erfanian A
    J Neural Eng; 2018 Jun; 15(3):036020. PubMed ID: 29485407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decoding of finger trajectory from ECoG using deep learning.
    Xie Z; Schwartz O; Prasad A
    J Neural Eng; 2018 Jun; 15(3):036009. PubMed ID: 29182152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays.
    Kaiju T; Doi K; Yokota M; Watanabe K; Inoue M; Ando H; Takahashi K; Yoshida F; Hirata M; Suzuki T
    Front Neural Circuits; 2017; 11():20. PubMed ID: 28442997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface.
    Jang SJ; Yang YJ; Ryun S; Kim JS; Chung CK; Jeong J
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35985293
    [No Abstract]   [Full Text] [Related]  

  • 28. Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements.
    Wang W; Degenhart AD; Collinger JL; Vinjamuri R; Sudre GP; Adelson PD; Holder DL; Leuthardt EC; Moran DW; Boninger ML; Schwartz AB; Crammond DJ; Tyler-Kabara EC; Weber DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():586-9. PubMed ID: 19964229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A state-based probabilistic method for decoding hand position during movement from ECoG signals in non-human primate.
    Farrokhi B; Erfanian A
    J Neural Eng; 2020 May; 17(2):026042. PubMed ID: 32224511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information.
    Zheng Y; Hu X
    Int J Neural Syst; 2021 Jun; 31(6):2150010. PubMed ID: 33541251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asynchronous decoding of dexterous finger movements using M1 neurons.
    Aggarwal V; Acharya S; Tenore F; Shin HC; Etienne-Cummings R; Schieber MH; Thakor NV
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):3-14. PubMed ID: 18303800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity and specificity of upper extremity movements decoded from electrocorticogram.
    Do AH; Wang PT; King CE; Schombs A; Lin JJ; Sazgar M; Hsu FP; Shaw SJ; Millett DE; Liu CY; Szymanska AA; Chui LA; Nenadic Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5618-21. PubMed ID: 24111011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 34. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface.
    Rouse AG; Williams JJ; Wheeler JJ; Moran DW
    J Neural Eng; 2016 Oct; 13(5):056018. PubMed ID: 27651034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural decoding using gyral and intrasulcal electrocorticograms.
    Yanagisawa T; Hirata M; Saitoh Y; Kato A; Shibuya D; Kamitani Y; Yoshimine T
    Neuroimage; 2009 May; 45(4):1099-106. PubMed ID: 19349227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuron selection based on deflection coefficient maximization for the neural decoding of dexterous finger movements.
    Kim YH; Thakor NV; Schieber MH; Kim HN
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):374-84. PubMed ID: 25347884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asynchronous decoding of finger position and of EMG during precision grip using CM cell activity: application to robot control.
    Ouanezar S; Eskiizmirliler S; Maier MA
    J Integr Neurosci; 2011 Dec; 10(4):489-511. PubMed ID: 22262537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decoding ECoG signal into 3D hand translation using deep learning.
    ƚliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35287119
    [No Abstract]   [Full Text] [Related]  

  • 40. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.
    Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X
    Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.