These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22408826)

  • 1. The optic lobes of Diptera.
    Strausfeld NJ
    Philos Trans R Soc Lond B Biol Sci; 1970 Apr; 258(820):135-223. PubMed ID: 22408826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The optic lobes of Lepidoptera.
    Strausfeld NJ; Blest AD
    Philos Trans R Soc Lond B Biol Sci; 1970 Apr; 258(820):81-134. PubMed ID: 22408825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide.
    Nässel DR; Ohlsson LG; Johansson KU; Grimmelikhuijzen CJ
    Neuroscience; 1988 Oct; 27(1):347-62. PubMed ID: 3200445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A crustacean lobula plate: Morphology, connections, and retinotopic organization.
    Bengochea M; Berón de Astrada M; Tomsic D; Sztarker J
    J Comp Neurol; 2018 Jan; 526(1):109-119. PubMed ID: 28884472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents.
    Strausfeld NJ; Okamura JY
    J Comp Neurol; 2007 Jan; 500(1):166-88. PubMed ID: 17099891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal organization in fly optic lobes altered by laser ablations early in development or by mutations of the eye.
    Nässel DR; Geiger G
    J Comp Neurol; 1983 Jun; 217(1):86-102. PubMed ID: 6875054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa.
    Sinakevitch I; Douglass JK; Scholtz G; Loesel R; Strausfeld NJ
    J Comp Neurol; 2003 Dec; 467(2):150-72. PubMed ID: 14595766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of columnar inputs in the third optic ganglion of a highly visual crab.
    Bengochea M; Berón de Astrada M
    J Physiol Paris; 2014; 108(2-3):61-70. PubMed ID: 24929118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine-immunoreactive neurons in the blowfly visual system: light and electron microscopic immunocytochemistry.
    Nässel DR; Elekes K; Johansson KU
    J Chem Neuroanat; 1988; 1(6):311-25. PubMed ID: 3270359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representation of the stomatopod's retinal midband in the optic lobes: Putative neural substrates for integrating chromatic, achromatic and polarization information.
    Thoen HH; Sayre ME; Marshall J; Strausfeld NJ
    J Comp Neurol; 2018 May; 526(7):1148-1165. PubMed ID: 29377111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The organization of perpendicular fibre pathways in the insect optic lobe.
    Meinertzhagen IA
    Philos Trans R Soc Lond B Biol Sci; 1976 Jul; 274(935):555-94. PubMed ID: 11512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits.
    Douglass JK; Strausfeld NJ
    J Comp Neurol; 2003 Mar; 457(4):326-44. PubMed ID: 12561074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural organization of the third optic neuropil, the lobula, in the highly visual semiterrestrial crab Neohelice granulata.
    Lepore MG; Tomsic D; Sztarker J
    J Comp Neurol; 2022 Jul; 530(10):1533-1550. PubMed ID: 34985823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata.
    Sztarker J; Tomsic D
    J Comp Neurol; 2014 Oct; 522(14):3177-93. PubMed ID: 24659096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects.
    Higgins CM; Douglass JK; Strausfeld NJ
    Vis Neurosci; 2004; 21(4):567-86. PubMed ID: 15579222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Golgi studies of the first optic ganglion of the ant, Cataglyphis bicolor.
    Ribi WA
    Cell Tissue Res; 1975 Jul; 160(2):207-17. PubMed ID: 50141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical neuroanatomy of the fly's movement detection pathway.
    Sinakevitch I; Strausfeld NJ
    J Comp Neurol; 2004 Jan; 468(1):6-23. PubMed ID: 14648688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of fly visual interneurons after laser ablation of their central targets early in development.
    Nässel DR; Geiger G; Seyan HS
    J Comp Neurol; 1983 Jun; 216(4):421-8. PubMed ID: 6875046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual system of the stalk-eyed fly, Cyrtodiopsis quinqueguttata (Diopsidae, Diptera): an anatomical investigation of unusual eyes.
    Buschbeck EK; Hoy RR
    J Neurobiol; 1998 Nov; 37(3):449-68. PubMed ID: 9828050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neurons of the first synaptic region of the optic neuropil of the firefly, Phausis splendidula l. (Coleoptera).
    Ohly KP
    Cell Tissue Res; 1975; 158(1):89-109. PubMed ID: 1149081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.