These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22408980)

  • 21. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities.
    Dufferwiel S; Schwarz S; Withers F; Trichet AA; Li F; Sich M; Del Pozo-Zamudio O; Clark C; Nalitov A; Solnyshkov DD; Malpuech G; Novoselov KS; Smith JM; Skolnick MS; Krizhanovskii DN; Tartakovskii AI
    Nat Commun; 2015 Oct; 6():8579. PubMed ID: 26446783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong coupling between surface plasmons and excitons in an organic semiconductor.
    Bellessa J; Bonnand C; Plenet JC; Mugnier J
    Phys Rev Lett; 2004 Jul; 93(3):036404. PubMed ID: 15323846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active tuning of longitudinal strong coupling between anisotropic borophene plasmons and Bloch surface waves.
    Nong J; Xiao X; Feng F; Zhao B; Min C; Yuan X; Somekh M
    Opt Express; 2021 Aug; 29(17):27750-27759. PubMed ID: 34615184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Monolayer Strong Coupling in Dielectric Soft Microcavities.
    Vasista AB; Barnes WL
    Nano Lett; 2020 Mar; 20(3):1766-1773. PubMed ID: 32069420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong Coupling beyond the Light-Line.
    Menghrajani KS; Barnes WL
    ACS Photonics; 2020 Sep; 7(9):2448-2459. PubMed ID: 33163580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates.
    Spano FC
    J Chem Phys; 2015 May; 142(18):184707. PubMed ID: 25978905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities.
    Graf A; Held M; Zakharko Y; Tropf L; Gather MC; Zaumseil J
    Nat Mater; 2017 Sep; 16(9):911-917. PubMed ID: 28714985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Squeezed-Out Technique To Prepare High-Quality PbBr-Based Layered Perovskite Langmuir-Blodgett Films Applicable to Cavity Polariton Devices.
    Era M; Takada N
    Langmuir; 2019 Sep; 35(37):12224-12228. PubMed ID: 31339325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites.
    Giovanni D; Chong WK; Dewi HA; Thirumal K; Neogi I; Ramesh R; Mhaisalkar S; Mathews N; Sum TC
    Sci Adv; 2016 Jun; 2(6):e1600477. PubMed ID: 27386583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity.
    Slootsky M; Liu X; Menon VM; Forrest SR
    Phys Rev Lett; 2014 Feb; 112(7):076401. PubMed ID: 24579619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photon-mediated hybridization of frenkel excitons in organic semiconductor microcavities.
    Lidzey DG; Bradley DD; Armitage A; Walker S; Skolnick MS
    Science; 2000 Jun; 288(5471):1620-3. PubMed ID: 10834836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system.
    Hu J; Liu W; Xie W; Zhang W; Yao E; Zhang Y; Zhan Q
    Opt Lett; 2019 Nov; 44(22):5642-5645. PubMed ID: 31730127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS
    Lepeshov S; Wang M; Krasnok A; Kotov O; Zhang T; Liu H; Jiang T; Korgel B; Terrones M; Zheng Y; Alú A
    ACS Appl Mater Interfaces; 2018 May; 10(19):16690-16697. PubMed ID: 29651843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature.
    Fieramosca A; Polimeno L; Ardizzone V; De Marco L; Pugliese M; Maiorano V; De Giorgi M; Dominici L; Gigli G; Gerace D; Ballarini D; Sanvitto D
    Sci Adv; 2019 May; 5(5):eaav9967. PubMed ID: 31172027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large Rabi splitting of mixed plasmon-exciton states in small plasmonic moiré cavities.
    Ates S; Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Lett; 2020 Oct; 45(20):5824-5827. PubMed ID: 33057294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-gap polaritons in uniformly filled microcavities.
    Litinskaya M; Agranovich VM
    J Phys Condens Matter; 2009 Oct; 21(41):415301. PubMed ID: 21693982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled Strong Coupling and Absence of Dark Polaritons in Microcavities with Double Quantum Wells.
    Sivalertporn K; Muljarov EA
    Phys Rev Lett; 2015 Aug; 115(7):077401. PubMed ID: 26317745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical properties of photonic molecules and elliptical pillars made of ZnSe-based microcavities.
    Sebald K; Seyfried M; Klembt S; Kruse C
    Opt Express; 2011 Sep; 19(20):19422-9. PubMed ID: 21996883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules.
    Hakala TK; Toppari JJ; Kuzyk A; Pettersson M; Tikkanen H; Kunttu H; Törmä P
    Phys Rev Lett; 2009 Jul; 103(5):053602. PubMed ID: 19792498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photonic architectures for equilibrium high-temperature Bose-Einstein condensation in dichalcogenide monolayers.
    Jiang JH; John S
    Sci Rep; 2014 Dec; 4():7432. PubMed ID: 25503586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.