These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22408983)

  • 1. Efficiency enhancement InGaP/GaAs dual-junction solar cell with subwavelength antireflection nanorod arrays.
    Tsai MA; Chen HC; Tseng PC; Yu P; Chiu CH; Kuo HC; Lin SH
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10729-32. PubMed ID: 22408983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays.
    Tsai MA; Tseng PC; Chen HC; Kuo HC; Yu P
    Opt Express; 2011 Jan; 19 Suppl 1():A28-34. PubMed ID: 21263709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells.
    Chao JJ; Shiu SC; Hung SC; Lin CF
    Nanotechnology; 2010 Jul; 21(28):285203. PubMed ID: 20562485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications.
    Leem JW; Lee HK; Jun DH; Heo J; Park WK; Park JH; Yu JS
    Opt Express; 2014 Mar; 22 Suppl 2():A328-34. PubMed ID: 24922242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications.
    Leem JW; Lee HK; Jun DH; Heo J; Park WK; Park JH; Yu JS
    Opt Express; 2014 Mar; 22(5):A328-34. PubMed ID: 24800289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Growth Temperature on the Characteristics of Single-Junction p–i–n InGaP Solar Cells.
    Jung SH; Kim Y; Kim CZ; Jun DH; Kim K; Shin HB; Choi J; Park WK; Lee J; Kang HK
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2559-562. PubMed ID: 29658687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings.
    Lin YR; Wang HP; Lin CA; He JH
    J Appl Phys; 2009 Dec; 106(11):114310. PubMed ID: 20057938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement in Power Conversion Efficiency of GaAs Solar Cells by Utilizing Gold Nanostar Film for Light-Trapping.
    Zhu SQ; Bian B; Zhu YF; Yang J; Zhang D; Feng L
    Front Chem; 2019; 7():137. PubMed ID: 30941345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced omnidirectional and weatherability of Cu
    Lai FI; Yang JF; Liao WX; Kuo SY
    Sci Rep; 2017 Nov; 7(1):14927. PubMed ID: 29097732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.
    Kim Y; Lam ND; Kim K; Kim S; Rotermund F; Lim H; Lee J
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5479-83. PubMed ID: 22966594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency improvement of InGaP/GaAs/Ge solar cells by hydrothermal-deposited ZnO nanotube structure.
    Chung CC; Tran BT; Lin KL; Ho YT; Yu HW; Quan NH; Chang EY
    Nanoscale Res Lett; 2014; 9(1):338. PubMed ID: 25045341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ge Solar Cells with Micro-Rod Arrays: Structural and Optical Properties.
    Yun Y; Kim K; Lee J
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4347-4352. PubMed ID: 33714326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.
    Lee YJ; Yao YC; Tsai MT; Liu AF; Yang MD; Lai JT
    Opt Express; 2013 Nov; 21 Suppl 6():A953-63. PubMed ID: 24514936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.
    van Dam D; van Hoof NJ; Cui Y; van Veldhoven PJ; Bakkers EP; Gómez Rivas J; Haverkort JE
    ACS Nano; 2016 Dec; 10(12):11414-11419. PubMed ID: 28024324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications.
    Behera S; Fry PW; Francis H; Jin CY; Hopkinson M
    Sci Rep; 2020 Apr; 10(1):6269. PubMed ID: 32286418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays.
    Xie WQ; Oh JI; Shen WZ
    Nanotechnology; 2011 Feb; 22(6):065704. PubMed ID: 21212474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers.
    Chen HC; Lin CC; Han HW; Tsai YL; Chang CH; Wang HW; Tsai MA; Kuo HC; Yu P
    Opt Express; 2011 Sep; 19 Suppl 5():A1141-7. PubMed ID: 21935257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties.
    Lin YR; Lai KY; Wang HP; He JH
    Nanoscale; 2010 Dec; 2(12):2765-8. PubMed ID: 20936223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral splitting for an InGaP/GaAs parallel junction solar cell.
    Erim MN; Erim N; Kurt H
    Appl Opt; 2019 Jun; 58(16):4265-4270. PubMed ID: 31251241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?
    Yang L; Pillai S; Green MA
    Sci Rep; 2015 Jul; 5():11852. PubMed ID: 26138405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.