These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 22409014)
21. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene. Tsoufis T; Syrgiannis Z; Akhtar N; Prato M; Katsaros F; Sideratou Z; Kouloumpis A; Gournis D; Rudolf P Nanoscale; 2015 May; 7(19):8995-9003. PubMed ID: 25920624 [TBL] [Abstract][Full Text] [Related]
22. A comparative study on the effects of ultrathin luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite. Karimi B; Ramezanzadeh B J Colloid Interface Sci; 2017 May; 493():62-76. PubMed ID: 28088122 [TBL] [Abstract][Full Text] [Related]
23. Protein-assisted scalable mechanochemical exfoliation of few-layer biocompatible graphene nanosheets. Thomas DG; De-Alwis S; Gupta S; Pecharsky VK; Mendivelso-Perez D; Montazami R; Smith EA; Hashemi NN R Soc Open Sci; 2021 Mar; 8(3):200911. PubMed ID: 34035934 [TBL] [Abstract][Full Text] [Related]
24. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Long D; Li W; Ling L; Miyawaki J; Mochida I; Yoon SH Langmuir; 2010 Oct; 26(20):16096-102. PubMed ID: 20863088 [TBL] [Abstract][Full Text] [Related]
25. Facile and Green Synthesis of Graphene-Based Conductive Adhesives via Liquid Exfoliation Process. Wu JY; Lai YC; Chang CL; Hung WC; Wu HM; Liao YC; Huang CH; Liu WR Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30597905 [TBL] [Abstract][Full Text] [Related]
26. Direct exfoliation of graphite to graphene by a facile chemical approach. Feng H; Wu Y; Li J Small; 2014 Jun; 10(11):2233-8. PubMed ID: 24610795 [TBL] [Abstract][Full Text] [Related]
27. Mass production of highly-porous graphene for high-performance supercapacitors. Amiri A; Shanbedi M; Ahmadi G; Eshghi H; Kazi SN; Chew BT; Savari M; Zubir MN Sci Rep; 2016 Sep; 6():32686. PubMed ID: 27604639 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. Wu ZS; Ren W; Gao L; Zhao J; Chen Z; Liu B; Tang D; Yu B; Jiang C; Cheng HM ACS Nano; 2009 Feb; 3(2):411-7. PubMed ID: 19236079 [TBL] [Abstract][Full Text] [Related]
29. Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction. Qian W; Cui X; Hao R; Hou Y; Zhang Z ACS Appl Mater Interfaces; 2011 Jul; 3(7):2259-64. PubMed ID: 21644571 [TBL] [Abstract][Full Text] [Related]
30. Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties. Pan Q; Xie J; Zhu T; Cao G; Zhao X; Zhang S Inorg Chem; 2014 Apr; 53(7):3511-8. PubMed ID: 24646377 [TBL] [Abstract][Full Text] [Related]
31. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Wan X; Huang Y; Chen Y Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410 [TBL] [Abstract][Full Text] [Related]
32. High-pressure hydrogenation of graphene: towards graphane. Poh HL; Šaněk F; Sofer Z; Pumera M Nanoscale; 2012 Nov; 4(22):7006-11. PubMed ID: 23041800 [TBL] [Abstract][Full Text] [Related]
33. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. Fan ZJ; Kai W; Yan J; Wei T; Zhi LJ; Feng J; Ren YM; Song LP; Wei F ACS Nano; 2011 Jan; 5(1):191-8. PubMed ID: 21230006 [TBL] [Abstract][Full Text] [Related]
35. Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye. Yuan X; Zhou C; Jin Y; Jing Q; Yang Y; Shen X; Tang Q; Mu Y; Du AK J Colloid Interface Sci; 2016 Apr; 468():211-219. PubMed ID: 26851454 [TBL] [Abstract][Full Text] [Related]
36. Temperature as a key parameter for graphene sono-exfoliation in water. Kaur A; Morton JA; Tyurnina AV; Priyadarshi A; Holland A; Mi J; Porfyrakis K; Eskin DG; Tzanakis I Ultrason Sonochem; 2022 Nov; 90():106187. PubMed ID: 36198250 [TBL] [Abstract][Full Text] [Related]
37. ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. Li B; Liu T; Wang Y; Wang Z J Colloid Interface Sci; 2012 Jul; 377(1):114-21. PubMed ID: 22498370 [TBL] [Abstract][Full Text] [Related]
38. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles. Ihiawakrim D; Ersen O; Melin F; Hellwig P; Janowska I; Begin D; Baaziz W; Begin-Colin S; Pham-Huu C; Baati R Nanoscale; 2013 Oct; 5(19):9073-80. PubMed ID: 23900422 [TBL] [Abstract][Full Text] [Related]
39. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Parvez K; Wu ZS; Li R; Liu X; Graf R; Feng X; Müllen K J Am Chem Soc; 2014 Apr; 136(16):6083-91. PubMed ID: 24684678 [TBL] [Abstract][Full Text] [Related]
40. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Niu L; Li M; Tao X; Xie Z; Zhou X; Raju AP; Young RJ; Zheng Z Nanoscale; 2013 Aug; 5(16):7202-8. PubMed ID: 23824229 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]