These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 22409014)

  • 41. High-yield graphene produced from the synergistic effect of inflated temperature and gelatin offers high stability and cellular compatibility.
    Tiwari P; Kaur N; Sharma V; Mobin SM
    Phys Chem Chem Phys; 2018 Aug; 20(30):20096-20107. PubMed ID: 30024577
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile Large Scale Production of Few-Layer Graphene Sheets by Shear Exfoliation in Volatile Solvent.
    Akhtar MW; Park CW; Kim YS; Kim JS
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9624-9. PubMed ID: 26682388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Liquid-Phase Exfoliation of Kaolinite by High-Shear Mixer with Graphite Oxide as an Amphiphilic Dispersant.
    Huang X; Li Y; Yin X; Tian J; Wu W
    Langmuir; 2019 Oct; 35(43):13833-13843. PubMed ID: 31592673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation.
    Chen CH; Yang SW; Chuang MC; Woon WY; Su CY
    Nanoscale; 2015 Oct; 7(37):15362-73. PubMed ID: 26332120
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gold nanoparticle-embedded porous graphene thin films fabricated via layer-by-layer self-assembly and subsequent thermal annealing for electrochemical sensing.
    Xi Q; Chen X; Evans DG; Yang W
    Langmuir; 2012 Jun; 28(25):9885-92. PubMed ID: 22670869
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.
    Wu L; Li W; Li P; Liao S; Qiu S; Chen M; Guo Y; Li Q; Zhu C; Liu L
    Small; 2014 Apr; 10(7):1421-9. PubMed ID: 24323826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrasonic spray pyrolysis synthesis of reduced graphene oxide/anatase TiO
    Park JA; Yang B; Lee J; Kim IG; Kim JH; Choi JW; Park HD; Nah IW; Lee SH
    Chemosphere; 2018 Jan; 191():738-746. PubMed ID: 29078195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications.
    Ambrosi A; Pumera M
    Chemistry; 2016 Jan; 22(1):153-9. PubMed ID: 26441292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sulfuric acid intercalated graphite oxide for graphene preparation.
    Hong Y; Wang Z; Jin X
    Sci Rep; 2013 Dec; 3():3439. PubMed ID: 24310650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation and characterization of some graphene based nanocomposite materials.
    Sheshmani S; Amini R
    Carbohydr Polym; 2013 Jun; 95(1):348-59. PubMed ID: 23618279
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient Graphene Production by Combined Bipolar Electrochemical Intercalation and High-Shear Exfoliation.
    Bjerglund ET; Kristensen MEP; Stambula S; Botton GA; Pedersen SU; Daasbjerg K
    ACS Omega; 2017 Oct; 2(10):6492-6499. PubMed ID: 31457250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Covalent synthesis of organophilic chemically functionalized graphene sheets.
    Shen J; Li N; Shi M; Hu Y; Ye M
    J Colloid Interface Sci; 2010 Aug; 348(2):377-83. PubMed ID: 20494367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation.
    Chen GL; Shau SM; Juang TY; Lee RH; Chen CP; Suen SY; Jeng RJ
    Langmuir; 2011 Dec; 27(23):14563-9. PubMed ID: 22011195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Effect of Thermal Exfoliation Temperature on the Structure and Supercapacitive Performance of Graphene Nanosheets.
    Xian H; Peng T; Sun H; Wang J
    Nanomicro Lett; 2015; 7(1):17-26. PubMed ID: 30464952
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functionalization of graphene via 1,3-dipolar cycloaddition.
    Quintana M; Spyrou K; Grzelczak M; Browne WR; Rudolf P; Prato M
    ACS Nano; 2010 Jun; 4(6):3527-33. PubMed ID: 20503982
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Field emission from few-layer graphene nanosheets produced by liquid phase exfoliation of graphite.
    Dong J; Zeng B; Lan Y; Tian S; Shan Y; Liu X; Yang Z; Wang H; Ren ZF
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5051-5. PubMed ID: 21125849
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly conducting graphene sheets and Langmuir-Blodgett films.
    Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H
    Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exfoliation of Layered Topological Insulators Bi
    Ambrosi A; Sofer Z; Luxa J; Pumera M
    ACS Nano; 2016 Dec; 10(12):11442-11448. PubMed ID: 27936571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets.
    Sheshmani S; Fashapoyeh MA
    Acta Chim Slov; 2013; 60(4):813-25. PubMed ID: 24362985
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites.
    Wang F; Jyothirmayee Aravind SS; Wu H; Forys J; Venkataraman V; Ramanujachary K; Hu X
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():728-739. PubMed ID: 28629074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.