BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 22409028)

  • 1. Preparation of gold nano-cones as surface-enhanced Raman scattering sensors for molecule detection.
    Yang Y; Huang Z; Nogami M; Tanemura M; Yamaguchi K; Li ZY; Zhou F; Huang YP
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10930-4. PubMed ID: 22409028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics.
    Yang Y; Li ZY; Yamaguchi K; Tanemura M; Huang Z; Jiang D; Chen Y; Zhou F; Nogami M
    Nanoscale; 2012 Apr; 4(8):2663-9. PubMed ID: 22410821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.
    Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of SiO
    Song D; Wang T; Zhuang L
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive and high laser damage threshold substrates for surface-enhanced Raman scattering based on gold and silver nanoparticles.
    Mayr F; Zimmerleiter R; Farias PMA; Bednorz M; Salinas Y; Galembek A; Cardozo ODF; Wielend D; Oliveira D; Milani R; Brito-Silva TM; Brandstetter M; Padrón-Hernández E; Burgholzer P; Stingl A; Scharber MC; Sariciftci NS
    Anal Sci Adv; 2023 Dec; 4(11-12):335-346. PubMed ID: 38715649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapidly fabricating a large area nanotip microstructure for high-sensitivity SERS applications.
    Ma J; Liu W; Ma Z; Song P; Zhao Y; Yang F; Wang X
    Nanoscale; 2019 Nov; 11(42):20194-20198. PubMed ID: 31617548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Raman Scattering (SERS) Studies of Disc-on-Pillar (DOP) Arrays: Contrasting Enhancement Factor with Analytical Performance.
    Velez RA; Lavrik NV; Kravchenko II; Sepaniak MJ; Jesus MA
    Appl Spectrosc; 2019 Jun; 73(6):665-677. PubMed ID: 30990053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film.
    Park S; Lee J; Ko H
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44088-44095. PubMed ID: 29172436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots.
    Kusch P; Mastel S; Mueller NS; Morquillas Azpiazu N; Heeg S; Gorbachev R; Schedin F; Hübner U; Pascual JI; Reich S; Hillenbrand R
    Nano Lett; 2017 Apr; 17(4):2667-2673. PubMed ID: 28323430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS).
    Gopinath A; Boriskina SV; Reinhard BM; Dal Negro L
    Opt Express; 2009 Mar; 17(5):3741-53. PubMed ID: 19259215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter.
    Chen L; Yan H; Xue X; Jiang D; Cai Y; Liang D; Jung YM; Han XX; Zhao B
    Appl Spectrosc; 2017 Jul; 71(7):1543-1550. PubMed ID: 28441033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.