BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 22409028)

  • 21. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.
    Wang H; Jiang X; Lee ST; He Y
    Small; 2014 Nov; 10(22):4455-68. PubMed ID: 25243935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L; Lee TH; Elliott SR
    Opt Lett; 2009 Sep; 34(17):2685-7. PubMed ID: 19724532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incident angle-tuned, broadband, ultrahigh-sensitivity plasmonic antennas prepared from nanoparticles on imprinted mirrors.
    Yu CC; Tseng YC; Su PY; Lin KT; Shao CC; Chou SY; Yen YT; Chen HL
    Nanoscale; 2015 Mar; 7(9):3985-96. PubMed ID: 25567353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy.
    Basuray S; Pathak A; Bok S; Chen B; Hamm SC; Mathai CJ; Guha S; Gangopadhyay K; Gangopadhyay S
    Nanotechnology; 2017 Jan; 28(2):025302. PubMed ID: 27905323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy.
    Wu W; Hu M; Ou FS; Li Z; Williams RS
    Nanotechnology; 2010 Jun; 21(25):255502. PubMed ID: 20508315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room-temperature sensor based on surface-enhanced Raman spectroscopy.
    Yang KH; Mai FD; Yu CC; Liu YC
    Analyst; 2014 Oct; 139(20):5164-9. PubMed ID: 25112170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering.
    Zhang CX; Su L; Chan YF; Wu ZL; Zhao YM; Xu HJ; Sun XM
    Nanotechnology; 2013 Aug; 24(33):335501. PubMed ID: 23881155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.
    Kosović M; Balarin M; Ivanda M; Đerek V; Marciuš M; Ristić M; Gamulin O
    Appl Spectrosc; 2015 Dec; 69(12):1417-24. PubMed ID: 26556231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF; Mu C; Xu DS; Tong LM; Zhu T; Du WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2329-32. PubMed ID: 19123400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma.
    Simas MV; Olaniyan PO; Hati S; Davis GA; Anspach G; Goodpaster JV; Manicke NE; Sardar R
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46681-46696. PubMed ID: 37769194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Templated fabrication of metal half-shells for surface-enhanced Raman scattering.
    Liu X; Linn NC; Sun CH; Jiang P
    Phys Chem Chem Phys; 2010 Feb; 12(6):1379-87. PubMed ID: 20119616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and SERS Study of Silver Microstructures with Dendritic Shape.
    Zhang XT; Zhao CL; Zhou YM; Dong QM; Lang TT; Jin SZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Oct; 35(10):2952-7. PubMed ID: 26904849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles.
    Kalachyova Y; Mares D; Jerabek V; Ulbrich P; Lapcak L; Svorcik V; Lyutakov O
    Phys Chem Chem Phys; 2017 Jun; 19(22):14761-14769. PubMed ID: 28541350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Volume-Enhanced Raman Scattering Detection of Viruses.
    Zhang X; Zhang X; Luo C; Liu Z; Chen Y; Dong S; Jiang C; Yang S; Wang F; Xiao X
    Small; 2019 Mar; 15(11):e1805516. PubMed ID: 30706645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering.
    Chen LY; Yang KH; Chen HC; Liu YC; Chen CH; Chen QY
    Analyst; 2014 Apr; 139(8):1929-37. PubMed ID: 24575422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS).
    Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular fiber sensors based on surface enhanced Raman scattering (SERS).
    Shi C; Zhang Y; Gu C; Chen B; Seballos L; Olson T; Zhang JZ
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2234-46. PubMed ID: 19437961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.