BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 22409028)

  • 41. Simple strategy to improve surface-enhanced Raman scattering based on electrochemically prepared roughened silver substrates.
    Yang KH; Liu YC; Yu CC
    Langmuir; 2010 Jul; 26(13):11512-7. PubMed ID: 20524629
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.
    Kassu A; Farley C; Sharma A; Kim W; Guo J
    Sensors (Basel); 2015 Nov; 15(12):29924-37. PubMed ID: 26633402
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensitive and Reproducible Gold SERS Sensor Based on Interference Lithography and Electrophoretic Deposition.
    Hwang JS; Yang M
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30469441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis, properties, and surface enhanced Raman scattering of gold and silver nanoparticles in chitosan matrix.
    Wei D; Qian W; Wu D; Xia Y; Liu X
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2566-73. PubMed ID: 19438003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor.
    Ma H; Zhang S; Yuan G; Liu Y; Cao X; Kong X; Wang Y
    Appl Spectrosc; 2023 Oct; 77(10):1163-1172. PubMed ID: 37654053
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones.
    Jonker D; Srivastava K; Lafuente M; Susarrey-Arce A; van der Stam W; van den Berg A; Odijk M; Gardeniers HJGE
    ACS Appl Nano Mater; 2023 Jun; 6(11):9657-9669. PubMed ID: 37325012
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.
    Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U
    ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel method for fabricating the surface-enhanced Raman scattering substrates and its enhanced properties.
    Li J; Xu X; Wang B; Wang Y; Wang L; Zhang C; Sun J
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7774-7. PubMed ID: 21138030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids.
    Wu HC; Chen TC; Tsai HJ; Chen CS
    Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SERS performance of gold nanotubes obtained by sputtering onto polycarbonate track-etched membranes.
    Rodrigues DC; Andrade GF; Temperini ML
    Phys Chem Chem Phys; 2013 Jan; 15(4):1169-76. PubMed ID: 23223523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates.
    Lu F; Guo Y; Wang Y; Song W; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():83-87. PubMed ID: 29395930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering.
    Qian C; Ni C; Yu W; Wu W; Mao H; Wang Y; Xu J
    Small; 2011 Jul; 7(13):1800-6. PubMed ID: 21608122
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-assembly of large-scale gold nanoparticle arrays and their application in SERS.
    Zhu SQ; Zhang T; Guo XL; Zhang XY
    Nanoscale Res Lett; 2014 Mar; 9(1):114. PubMed ID: 24624899
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-Effect Enhanced Raman Scattering Based on Au/ZnO Nanorods Structures.
    Lin Y; Zhang J; Zhang Y; Yan S; Nan F; Yu Y
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364559
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly efficient nanoplasmonic SERS on cardboard packaging substrates.
    Araújo A; Caro C; Mendes MJ; Nunes D; Fortunato E; Franco R; Águas H; Martins R
    Nanotechnology; 2014 Oct; 25(41):415202. PubMed ID: 25257959
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arrayed nanopore silver thin films for surface-enhanced Raman scattering.
    Zhang W; Tian Q; Chen Z; Zhao C; Chai H; Wu Q; Li W; Chen X; Deng Y; Song Y
    RSC Adv; 2020 Jun; 10(40):23908-23915. PubMed ID: 35517352
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures.
    Jin Y; Wang Y; Chen M; Xiao X; Zhang T; Wang J; Jiang K; Fan S; Li Q
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32369-32376. PubMed ID: 28853546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuning plasmons on nano-structured substrates for NIR-SERS.
    Mahajan S; Abdelsalam M; Suguwara Y; Cintra S; Russell A; Baumberg J; Bartlett P
    Phys Chem Chem Phys; 2007 Jan; 9(1):104-9. PubMed ID: 17164891
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of nano/microstructures for SERS substrates using an electrochemical method.
    Zhang J; Jia T; Li X; Yang J; Li Z; Shi G; Zhang X; Wang Z
    Beilstein J Nanotechnol; 2020; 11():1568-1576. PubMed ID: 33134001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.