These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22409028)

  • 101. Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip.
    Shi Y; Wang H; Jiang X; Sun B; Song B; Su Y; He Y
    Anal Chem; 2016 Apr; 88(7):3723-9. PubMed ID: 26923545
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Controllable Preparation of SERS-Active Ag-FeS Substrates by a Cosputtering Technique.
    Ma N; Zhang XY; Fan W; Han B; Jin S; Park Y; Chen L; Zhang Y; Liu Y; Yang J; Jung YM
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30717362
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Surface-enhanced Raman scattering dendritic substrates fabricated by deposition of gold and silver on silicon.
    Cheng M; Fang J; Cao M; Jin Y
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7451-4. PubMed ID: 21137957
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy.
    Casadio F; Leona M; Lombardi JR; Van Duyne R
    Acc Chem Res; 2010 Jun; 43(6):782-91. PubMed ID: 20420359
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Gold nanoworms: Optical properties and simultaneous SERS and fluorescence enhancement.
    Khan HI; Khan GA; Mehmood S; Khan AD; Ahmed W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117111. PubMed ID: 31141771
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Characterization of silane-modified immobilized gold colloids as a substrate for surface-enhanced Raman spectroscopy.
    Olson LG; Lo YS; Beebe TP; Harris JM
    Anal Chem; 2001 Sep; 73(17):4268-76. PubMed ID: 11569819
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Femtosecond Laser-Induced, Nanoparticle-Embedded Periodic Surface Structures on Crystalline Silicon for Reproducible and Multi-utility SERS Platforms.
    Hamad S; Bharati Moram SS; Yendeti B; Podagatlapalli GK; Nageswara Rao SVS; Pathak AP; Mohiddon MA; Soma VR
    ACS Omega; 2018 Dec; 3(12):18420-18432. PubMed ID: 31458414
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Si nano-cavity enabled surface-enhanced Raman scattering signal amplification.
    Chen J; Tang P; Liu G; Yi Z; Liu X; Pan P; Liu ZQ
    Nanotechnology; 2019 Nov; 30(46):465204. PubMed ID: 31300613
    [TBL] [Abstract][Full Text] [Related]  

  • 109. W
    Li M; Fan X; Gao Y; Qiu T
    J Phys Chem Lett; 2019 Jul; 10(14):4038-4044. PubMed ID: 31265302
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Nanofocusing of a metallized double periodic arranged nanocone array for surface-enhanced Raman spectroscopy.
    Zhang L; Meng C; Zhang G; Bai D; Gao F; Xu L; Zhang W; Mei T; Zhao J
    Opt Express; 2021 Aug; 29(18):28086-28095. PubMed ID: 34614947
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering.
    Sun AY; Lee YC; Chang SW; Chen SL; Wang HC; Wan D; Chen HL
    Anal Chem; 2021 Mar; 93(9):4299-4307. PubMed ID: 33635644
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Composite Structure Based on Gold-Nanoparticle Layer and HMM for Surface-Enhanced Raman Spectroscopy Analysis.
    Wang Z; Huo Y; Ning T; Liu R; Zha Z; Shafi M; Li C; Li S; Xing K; Zhang R; Xu S; Li Z; Jiang S
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33652800
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Synthesis of Gold Nanoparticle Stabilized on Silicon Nanocrystal Containing Polymer Microspheres as Effective Surface-Enhanced Raman Scattering (SERS) Substrates.
    Zhu G; Cheng L; Liu G; Zhu L
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32751785
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering.
    Dos Santos DP; Temperini MLA; Brolo AG
    Acc Chem Res; 2019 Feb; 52(2):456-464. PubMed ID: 30668089
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Controlled Electrodeposition of Gold on Graphene: Maximization of the Defect-Enhanced Raman Scattering Response.
    Ananthoju B; Biroju RK; Theis W; Dryfe RAW
    Small; 2019 Nov; 15(48):e1901555. PubMed ID: 31112374
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability.
    Sun H; Cong S; Zheng Z; Wang Z; Chen Z; Zhao Z
    J Am Chem Soc; 2019 Jan; 141(2):870-878. PubMed ID: 30566339
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Obliquely Deposited Titanium Nitride Nanorod Arrays as Surface-Enhanced Raman Scattering Substrates.
    Jen YJ; Lin MJ; Cheang HL; Chan TL
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684022
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Efficient Raman Enhancement in Molybdenum Disulfide by Tuning the Interlayer Spacing.
    Li X; Guo S; Su J; Ren X; Fang Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28474-28483. PubMed ID: 32468820
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Silver Flowerlike Structures for Surface-Enhanced Raman Spectroscopy.
    Tsutsumanova GG; Todorov ND; Russev SC; Abrashev MV; Ivanov VG; Lukoyanov AV
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947532
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Thermal dewetting tunes surface enhanced resonance Raman scattering (SERRS) performance.
    Andrikaki S; Govatsi K; Yannopoulos SN; Voyiatzis GA; Andrikopoulos KS
    RSC Adv; 2018 Aug; 8(51):29062-29070. PubMed ID: 35547969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.