These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22409028)

  • 121. Dimensional Design for Surface-Enhanced Raman Spectroscopy.
    Long L; Ju W; Yang HY; Li Z
    ACS Mater Au; 2022 Sep; 2(5):552-575. PubMed ID: 36855623
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Detection of Sub-Micro- and Nanoplastic Particles on Gold Nanoparticle-Based Substrates through Surface-Enhanced Raman Scattering (SERS) Spectroscopy.
    Caldwell J; Taladriz-Blanco P; Rothen-Rutishauser B; Petri-Fink A
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925012
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering.
    Fan X; Wei P; Li G; Li M; Lan L; Hao Q; Qiu T
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51618-51627. PubMed ID: 34674528
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Synthesis and defect engineering of molybdenum oxides and their SERS applications.
    Gu C; Li D; Zeng S; Jiang T; Shen X; Zhang H
    Nanoscale; 2021 Mar; 13(11):5620-5651. PubMed ID: 33688873
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Increasing hotspots density for high-sensitivity SERS detection by assembling array of Ag nanocubes.
    Liu J; Wang Z; Meng Y; Chen C; Chen Q; Wang Y; Dou S; Liu X; Lu N
    Talanta; 2023 Jun; 258():124408. PubMed ID: 36871516
    [TBL] [Abstract][Full Text] [Related]  

  • 126. Large-Scale Fabrication of Nanostructure on Bio-Metallic Substrate for Surface Enhanced Raman and Fluorescence Scattering.
    Lu L; Zhang J; Jiao L; Guan Y
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31247961
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis.
    Lee CW; Tseng FG
    Biomicrofluidics; 2018 Jan; 12(1):011502. PubMed ID: 29430272
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials.
    Song X; Wang Y; Zhao F; Li Q; Ta HQ; Rümmeli MH; Tully CG; Li Z; Yin WJ; Yang L; Lee KB; Yang J; Bozkurt I; Liu S; Zhang W; Chhowalla M
    ACS Nano; 2019 Jul; 13(7):8312-8319. PubMed ID: 31284713
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Linear chains of Ag nanoparticles embedded in dielectric films for SERS applications in analytical chemistry.
    Camelio S; Babonneau D; Vandenhecke E; Louarn G; Humbert B
    Nanoscale Adv; 2021 Nov; 3(23):6719-6727. PubMed ID: 36132650
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Indirect Interactions between Raman Probes Encapsulated within Cucurbit[7]urils and Gold Nanorods to Enhance Long-term Stability and Signal.
    Seo MJ; Baek K; Ha JW
    Anal Sci; 2019 Sep; 35(9):1009-1013. PubMed ID: 31130582
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Ag@BiOCl super-hydrophobic nanostructure for enhancing SERS detection sensitivity.
    Feng H; Yang F; Dong J; Liu Q
    RSC Adv; 2020 Mar; 10(20):11865-11870. PubMed ID: 35496623
    [TBL] [Abstract][Full Text] [Related]  

  • 132. High signal collection efficiency in a 3D SERS chip using a micro-reflector.
    Feng Y; Ping W; Zhiqiang Z; Danyang L; Li C; Shunbo L
    Opt Express; 2020 Dec; 28(26):39790-39798. PubMed ID: 33379521
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Molybdenum Oxide/Tungsten Oxide Nano-heterojunction with Improved Surface-Enhanced Raman Scattering Performance.
    Xie S; Chen D; Gu C; Jiang T; Zeng S; Wang YY; Ni Z; Shen X; Zhou J
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33345-33353. PubMed ID: 34232012
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss.
    Shen Y; Cheng X; Li G; Zhu Q; Chi Z; Wang J; Jin C
    Nanoscale Horiz; 2016 Jul; 1(4):290-297. PubMed ID: 32260648
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Development of Gold Nanoparticle-Based SERS Substrates on TiO
    Breuch R; Klein D; Moers C; Siefke E; Wickleder C; Kaul P
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269348
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations.
    Solís DM; Taboada JM; Obelleiro F; Liz-Marzán LM; García de Abajo FJ
    ACS Photonics; 2017 Feb; 4(2):329-337. PubMed ID: 28239616
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Reusable Surface-Enhanced Raman Spectroscopy Substrates Made of Silicon Nanowire Array Coated with Silver Nanoparticles Fabricated by Metal-Assisted Chemical Etching and Photonic Reduction.
    Bai S; Du Y; Wang C; Wu J; Sugioka K
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31661881
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Homogenous high enhancement surface-enhanced Raman scattering (SERS) substrates by simple hierarchical tuning of gold nanofoams.
    Koster HJ; O'Toole HJ; Chiu KL; Rojalin T; Carney RP
    Colloid Interface Sci Commun; 2022 Mar; 47():. PubMed ID: 36397833
    [TBL] [Abstract][Full Text] [Related]  

  • 139. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement.
    Wang X; Zhang E; Shi H; Tao Y; Ren X
    Analyst; 2022 Mar; 147(7):1257-1272. PubMed ID: 35253817
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Label-Free SERS Quantum Semiconductor Probe for Molecular-Level and in Vitro Cellular Detection: A Noble-Metal-Free Methodology.
    Keshavarz M; Tan B; Venkatakrishnan K
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):34886-34904. PubMed ID: 30239189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.