These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22409108)

  • 1. Constrained path tracking at varying angles in a mouse tracking task.
    Thibbotuwawa N; Goonetilleke RS; Hoffmann ER
    Hum Factors; 2012 Feb; 54(1):138-50. PubMed ID: 22409108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open-loop and feedback-controlled mouse cursor movements in linear paths.
    Thibbotuwawa N; Hoffmann ER; Goonetilleke RS
    Ergonomics; 2012; 55(4):476-88. PubMed ID: 22397489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planning maximally smooth hand movements constrained to nonplanar workspaces.
    Liebermann DG; Krasovsky T; Berman S
    J Mot Behav; 2008 Nov; 40(6):516-31. PubMed ID: 18980905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained motion control on a hemispherical surface: path planning.
    Berman S; Liebermann DG; McIntyre J
    J Neurophysiol; 2014 Mar; 111(5):954-68. PubMed ID: 24259548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Two sides of the same coin": constant motor learning speeds up, whereas variable motor learning stabilizes, speed-accuracy movements.
    Skurvydas A; Satas A; Valanciene D; Mamkus G; Mickeviciene D; Majauskiene D; Brazaitis M
    Eur J Appl Physiol; 2020 May; 120(5):1027-1039. PubMed ID: 32172292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear and logarithmic speed-accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics.
    Bongers RM; Fernandez L; Bootsma RJ
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1443-57. PubMed ID: 19803648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in tactile sensitivity over the time-course of a goal-directed movement.
    Juravle G; Deubel H; Tan HZ; Spence C
    Behav Brain Res; 2010 Apr; 208(2):391-401. PubMed ID: 20018212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative computer mouse designs: performance, posture, and subjective evaluations for college students aged 18-25.
    Feathers DJ; Rollings K; Hedge A
    Work; 2013; 44 Suppl 1():S115-22. PubMed ID: 23241688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Computerized method for arm movement assessment in Parkinson's disease and cerebellar syndrome patients].
    Dordević O; Popović MB; Kostić V
    Srp Arh Celok Lek; 2005; 133(1-2):14-20. PubMed ID: 16053170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue effects on tracking performance and muscle activity.
    Huysmans MA; Hoozemans MJ; van der Beek AJ; de Looze MP; van Dieën JH
    J Electromyogr Kinesiol; 2008 Jun; 18(3):410-9. PubMed ID: 17208457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling object pursuit for desktop virtual reality.
    Liu L; van Liere R
    IEEE Trans Vis Comput Graph; 2012 Jul; 18(7):1017-26. PubMed ID: 22291149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.
    Debats NB; Ridderikhoff A; de Boer BJ; Peper CL
    Behav Brain Res; 2013 Aug; 250():334-42. PubMed ID: 23680163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A task-dependent effect of memory and hand-target on proprioceptive localization.
    Jones SA; Fiehler K; Henriques DY
    Neuropsychologia; 2012 Jun; 50(7):1462-70. PubMed ID: 22406556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinematic analysis of directional effects on mouse control.
    Lee B; Bang H
    Ergonomics; 2013; 56(11):1754-65. PubMed ID: 24040755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the control of arm movement during body motion as revealed by EMG analyses.
    Blouin J; Guillaud E; Bresciani JP; Guerraz M; Simoneau M
    Brain Res; 2010 Jan; 1309():40-52. PubMed ID: 19883633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Goal-directed aimed movements with path obstructions.
    Hoffmann ER; Sheikh IH
    Ergonomics; 2012; 55(8):946-62. PubMed ID: 22676580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haptic tracking permits bimanual independence.
    Rosenbaum DA; Dawson AM; Challis JH
    J Exp Psychol Hum Percept Perform; 2006 Oct; 32(5):1266-75. PubMed ID: 17002536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Analysis of Psychomotor Skills Metrics for Procedural Skills Decay.
    Parthiban C; Ray R; Rutherford D; Zinn M; Pugh C
    Stud Health Technol Inform; 2016; 220():285-8. PubMed ID: 27046593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the use of low-cost computer peripherals for the assessment of motor dysfunction in Parkinson's disease--quantification of bradykinesia using target tracking tasks.
    Allen DP; Playfer JR; Aly NM; Duffey P; Heald A; Smith SL; Halliday DM
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):286-94. PubMed ID: 17601199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.