These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22409589)

  • 41. Nanoparticle-doped polyimide for controlling the pretilt angle of liquid crystals devices.
    Hwang SJ; Jeng SC; Hsieh IM
    Opt Express; 2010 Aug; 18(16):16507-12. PubMed ID: 20721039
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic simulation of droplet interaction and self-assembly in a nematic liquid crystal.
    Zhou C; Yue P; Feng JJ
    Langmuir; 2008 Apr; 24(7):3099-110. PubMed ID: 18284259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Director-density coupling theory of the acousto-optic effect in nematic liquid crystals.
    Sátiro C; Vitoriano C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041702. PubMed ID: 22181152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A phase-field-crystal model for liquid crystals.
    Löwen H
    J Phys Condens Matter; 2010 Sep; 22(36):364105. PubMed ID: 21386521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computer simulations of the ordering in a hybrid cylindrical film of nematic liquid crystals.
    Chiccoli C; Pasini P; Teixeira de Souza R; Evangelista LR; Zannoni C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041705. PubMed ID: 22181155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanoparticle localization within chiral liquid crystal defect lines and nanoparticle interactions.
    Tasinkevych M; Park S; Mundoor H; Smalyukh II
    Phys Rev E; 2023 Mar; 107(3-1):034701. PubMed ID: 37073031
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phase Transition-Driven Nanoparticle Assembly in Liquid Crystal Droplets.
    Melton CN; Riahinasab ST; Keshavarz A; Stokes BJ; Hirst LS
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29518904
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Suppression of phase transitions in a confined rodlike liquid crystal.
    Grigoriadis C; Duran H; Steinhart M; Kappl M; Butt HJ; Floudas G
    ACS Nano; 2011 Nov; 5(11):9208-15. PubMed ID: 21974835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal.
    Mitov M; Portet C; Bourgerette C; Snoeck E; Verelst M
    Nat Mater; 2002 Dec; 1(4):229-31. PubMed ID: 12618783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly.
    Bisoyi HK; Kumar S
    Chem Soc Rev; 2011 Jan; 40(1):306-19. PubMed ID: 21125105
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liquid-crystalline nematic phase in aqueous suspensions of a disk-shaped natural beidellite clay.
    Paineau E; Antonova K; Baravian C; Bihannic I; Davidson P; Dozov I; Impéror-Clerc M; Levitz P; Madsen A; Meneau F; Michot LJ
    J Phys Chem B; 2009 Dec; 113(48):15858-69. PubMed ID: 19904906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular dynamics study of nanoparticle stability at liquid interfaces: effect of nanoparticle-solvent interaction and capillary waves.
    Cheung DL
    J Chem Phys; 2011 Aug; 135(5):054704. PubMed ID: 21823723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simple fabrication of liquid crystalline grating cells with homogeneous and twisted nematic structures and effects of orientational relaxation on diffraction properties.
    Kawai K; Sasaki T; Noda K; Kawatsuki N; Ono H
    Appl Opt; 2014 Jun; 53(17):3679-86. PubMed ID: 24921133
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Liquid crystal nanoparticles prepared as miniemulsions.
    Tongcher O; Sigel R; Landfester K
    Langmuir; 2006 May; 22(10):4504-11. PubMed ID: 16649756
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theory of ferroelectric nanoparticles in nematic liquid crystals.
    Lopatina LM; Selinger JV
    Phys Rev Lett; 2009 May; 102(19):197802. PubMed ID: 19518997
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Free-energy model for nanoparticle self-assembly by liquid crystal sorting.
    Atzin N; Guzmán O; Gutiérrez O; Hirst LS; Ghosh S
    Phys Rev E; 2018 Jun; 97(6-1):062704. PubMed ID: 30011549
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-assembled nanoparticle micro-shells templated by liquid crystal sorting.
    Rodarte AL; Cao BH; Panesar H; Pandolfi RJ; Quint M; Edwards L; Ghosh S; Hein JE; Hirst LS
    Soft Matter; 2015 Mar; 11(9):1701-7. PubMed ID: 25601081
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neural-network approach to modeling liquid crystals in complex confinement.
    Santos-Silva T; Teixeira PI; Anquetil-Deck C; Cleaver DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053316. PubMed ID: 25353923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Air tube formation at the freezing transition in nematic liquid crystals.
    Völtz C; Maeda Y; Tabe Y; Yokoyama H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031702. PubMed ID: 17500706
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic algorithm for the response of arbitrarily twisted nematic liquid crystals to an applied field.
    Sit A; Di Colandrea F; D'Errico A; Karimi E
    Phys Rev E; 2024 May; 109(5-1):054705. PubMed ID: 38907444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.