These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 22409944)
1. Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. Strandberg E; Tiltak D; Ehni S; Wadhwani P; Ulrich AS Biochim Biophys Acta; 2012 Jul; 1818(7):1764-76. PubMed ID: 22409944 [TBL] [Abstract][Full Text] [Related]
2. (19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. Afonin S; Glaser RW; Sachse C; Salgado J; Wadhwani P; Ulrich AS Biochim Biophys Acta; 2014 Sep; 1838(9):2260-8. PubMed ID: 24699372 [TBL] [Abstract][Full Text] [Related]
3. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
4. Structure analysis of the membrane-bound dermcidin-derived peptide SSL-25 from human sweat. Mühlhäuser P; Wadhwani P; Strandberg E; Bürck J; Ulrich AS Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2308-2318. PubMed ID: 28888369 [TBL] [Abstract][Full Text] [Related]
5. Helix Fraying and Lipid-Dependent Structure of a Short Amphipathic Membrane-Bound Peptide Revealed by Solid-State NMR. Strandberg E; Grau-Campistany A; Wadhwani P; Bürck J; Rabanal F; Ulrich AS J Phys Chem B; 2018 Jun; 122(23):6236-6250. PubMed ID: 29856607 [TBL] [Abstract][Full Text] [Related]
7. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides. Papo N; Shai Y Biochemistry; 2004 Jun; 43(21):6393-403. PubMed ID: 15157073 [TBL] [Abstract][Full Text] [Related]
8. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
9. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
10. Solid-state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers. Strandberg E; Kanithasen N; Tiltak D; Bürck J; Wadhwani P; Zwernemann O; Ulrich AS Biochemistry; 2008 Feb; 47(8):2601-16. PubMed ID: 18220419 [TBL] [Abstract][Full Text] [Related]
11. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374 [TBL] [Abstract][Full Text] [Related]
12. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314 [TBL] [Abstract][Full Text] [Related]
13. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy. Mani R; Waring AJ; Hong M Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158 [TBL] [Abstract][Full Text] [Related]
14. Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models. Agopian A; Castano S Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):117-26. PubMed ID: 24055820 [TBL] [Abstract][Full Text] [Related]
15. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
16. Control and role of pH in peptide-lipid interactions in oriented membrane samples. Misiewicz J; Afonin S; Ulrich AS Biochim Biophys Acta; 2015 Mar; 1848(3):833-41. PubMed ID: 25511586 [TBL] [Abstract][Full Text] [Related]
17. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes. Lipinski K; McKay MJ; Afrose F; Martfeld AN; Koeppe RE; Greathouse DV Chembiochem; 2019 Nov; 20(21):2784-2792. PubMed ID: 31150136 [TBL] [Abstract][Full Text] [Related]
19. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042 [TBL] [Abstract][Full Text] [Related]
20. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? Strandberg E; Ulrich AS Biochim Biophys Acta; 2015 Sep; 1848(9):1944-54. PubMed ID: 25726906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]