BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22409961)

  • 1. Pictet-Spenglerase involved in tetrahydroisoquinoline antibiotic biosynthesis.
    Koketsu K; Minami A; Watanabe K; Oguri H; Oikawa H
    Curr Opin Chem Biol; 2012 Apr; 16(1-2):142-9. PubMed ID: 22409961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Pictet-Spengler mechanism involved in the biosynthesis of tetrahydroisoquinoline antitumor antibiotics: a novel function for a nonribosomal peptide synthetase.
    Koketsu K; Minami A; Watanabe K; Oguri H; Oikawa H
    Methods Enzymol; 2012; 516():79-98. PubMed ID: 23034225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms.
    Koketsu K; Watanabe K; Suda H; Oguri H; Oikawa H
    Nat Chem Biol; 2010 Jun; 6(6):408-10. PubMed ID: 20453862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of Tetrahydroisoquinoline Antibiotics.
    Tang GL; Tang MC; Song LQ; Zhang Y
    Curr Top Med Chem; 2016; 16(15):1717-26. PubMed ID: 26456466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naphthyridinomycin biosynthesis revealing the use of leader peptide to guide nonribosomal peptide assembly.
    Pu JY; Peng C; Tang MC; Zhang Y; Guo JP; Song LQ; Hua Q; Tang GL
    Org Lett; 2013 Jul; 15(14):3674-7. PubMed ID: 23841701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core assembly mechanism of quinocarcin/SF-1739: bimodular complex nonribosomal peptide synthetases for sequential mannich-type reactions.
    Hiratsuka T; Koketsu K; Minami A; Kaneko S; Yamazaki C; Watanabe K; Oguri H; Oikawa H
    Chem Biol; 2013 Dec; 20(12):1523-35. PubMed ID: 24269153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ways of assembling complex natural products on modular nonribosomal peptide synthetases.
    Mootz HD; Schwarzer D; Marahiel MA
    Chembiochem; 2002 Jun; 3(6):490-504. PubMed ID: 12325005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in the study of the mechanism and application of nonribosomal peptide synthetases].
    Wang SY
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):734-7. PubMed ID: 17944384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemo-enzymatic Total Syntheses of Jorunnamycin A, Saframycin A, and N-Fmoc Saframycin Y3.
    Tanifuji R; Koketsu K; Takakura M; Asano R; Minami A; Oikawa H; Oguri H
    J Am Chem Soc; 2018 Aug; 140(34):10705-10709. PubMed ID: 30113836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Integrated β-Lactam Formation by a Nonribosomal Peptide Synthetase during Antibiotic Synthesis.
    Long DH; Townsend CA
    Biochemistry; 2018 Jun; 57(24):3353-3358. PubMed ID: 29701951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pictet-Spenglerases in alkaloid biosynthesis: Future applications in biocatalysis.
    Roddan R; Ward JM; Keep NH; Hailes HC
    Curr Opin Chem Biol; 2020 Apr; 55():69-76. PubMed ID: 31978651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total synthesis of alkaloids using both chemical and biochemical methods.
    Tanifuji R; Minami A; Oguri H; Oikawa H
    Nat Prod Rep; 2020 Aug; 37(8):1098-1121. PubMed ID: 32141467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Lactone formation during product release from a nonribosomal peptide synthetase.
    Schaffer JE; Reck MR; Prasad NK; Wencewicz TA
    Nat Chem Biol; 2017 Jul; 13(7):737-744. PubMed ID: 28504677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonribosomal peptide synthetases: structures and dynamics.
    Strieker M; Tanović A; Marahiel MA
    Curr Opin Struct Biol; 2010 Apr; 20(2):234-40. PubMed ID: 20153164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin.
    Schoenafinger G; Schracke N; Linne U; Marahiel MA
    J Am Chem Soc; 2006 Jun; 128(23):7406-7. PubMed ID: 16756271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing A Natural Antibiotic Nanofactory.
    Schmeing TM
    Clin Invest Med; 2016 Dec; 39(6):E220-E226. PubMed ID: 27917781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress of Pictet-Spenglerases].
    Xie Y; Chen Q; Zhang S; Shen C
    Sheng Wu Gong Cheng Xue Bao; 2020 Oct; 36(10):2001-2016. PubMed ID: 33169566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite.
    Höfer I; Crüsemann M; Radzom M; Geers B; Flachshaar D; Cai X; Zeeck A; Piel J
    Chem Biol; 2011 Mar; 18(3):381-91. PubMed ID: 21439483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form "trojan horse" antibiotics.
    Nolan EM; Walsh CT
    Biochemistry; 2008 Sep; 47(35):9289-99. PubMed ID: 18690711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxic tetramic acid derivative produced by a plant type-III polyketide synthase.
    Wakimoto T; Mori T; Morita H; Abe I
    J Am Chem Soc; 2011 Apr; 133(13):4746-9. PubMed ID: 21391603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.