BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22410281)

  • 1. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.
    Qi J; Kizjakina K; Robinson R; Tolani K; Sobrado P
    Anal Biochem; 2012 Jun; 425(1):80-7. PubMed ID: 22410281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kynurenine 3-monooxygenase from Pseudomonas fluorescens: substrate-like inhibitors both stimulate flavin reduction and stabilize the flavin-peroxo intermediate yet result in the production of hydrogen peroxide.
    Crozier-Reabe KR; Phillips RS; Moran GR
    Biochemistry; 2008 Nov; 47(47):12420-33. PubMed ID: 18954092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
    Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P
    Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor.
    Chocklett SW; Sobrado P
    Biochemistry; 2010 Aug; 49(31):6777-83. PubMed ID: 20614882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New frontiers in flavin-dependent monooxygenases.
    Reis RAG; Li H; Johnson M; Sobrado P
    Arch Biochem Biophys; 2021 Mar; 699():108765. PubMed ID: 33460580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases.
    Franceschini S; Fedkenheuer M; Vogelaar NJ; Robinson HH; Sobrado P; Mattevi A
    Biochemistry; 2012 Sep; 51(36):7043-5. PubMed ID: 22928747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen movements in the oxidative half-reaction of kynurenine 3-monooxygenase from Pseudomonas fluorescens reveal the mechanism of hydroxylation.
    Beaupre BA; Reabe KR; Roman JV; Moran GR
    Arch Biochem Biophys; 2020 Sep; 690():108474. PubMed ID: 32687799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavin-dependent N-hydroxylating enzymes: distribution and application.
    Mügge C; Heine T; Baraibar AG; van Berkel WJH; Paul CE; Tischler D
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6481-6499. PubMed ID: 32504128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase.
    Mayfield JA; Frederick RE; Streit BR; Wencewicz TA; Ballou DP; DuBois JL
    J Biol Chem; 2010 Oct; 285(40):30375-88. PubMed ID: 20650894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate binding modulates the activity of Mycobacterium smegmatis G, a flavin-dependent monooxygenase involved in the biosynthesis of hydroxamate-containing siderophores.
    Robinson R; Sobrado P
    Biochemistry; 2011 Oct; 50(39):8489-96. PubMed ID: 21870809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Nitro-Forming Enzyme Involved in Fosfazinomycin Biosynthesis.
    Valentino H; Sobrado P
    Biochemistry; 2021 Sep; 60(38):2851-2864. PubMed ID: 34516102
    [No Abstract]   [Full Text] [Related]  

  • 12. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution to catalysis of ornithine binding residues in ornithine N5-monooxygenase.
    Robinson R; Qureshi IA; Klancher CA; Rodriguez PJ; Tanner JJ; Sobrado P
    Arch Biochem Biophys; 2015 Nov; 585():25-31. PubMed ID: 26375201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Rapid Fluorescence-Based High-Throughput Screening Assay to Identify Novel Kynurenine 3-Monooxygenase Inhibitor Scaffolds.
    Jacobs KR; Guillemin GJ; Lovejoy DB
    SLAS Discov; 2018 Jul; 23(6):554-560. PubMed ID: 29420107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth.
    Martín Del Campo JS; Vogelaar N; Tolani K; Kizjakina K; Harich K; Sobrado P
    ACS Chem Biol; 2016 Nov; 11(11):3035-3042. PubMed ID: 27588426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of kynurenine 3-monooxygenase inhibition.
    Amaral M; Levy C; Heyes DJ; Lafite P; Outeiro TF; Giorgini F; Leys D; Scrutton NS
    Nature; 2013 Apr; 496(7445):382-5. PubMed ID: 23575632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Ornithine Hydroxylation Step in Albachelin Biosynthesis.
    Bufkin K; Sobrado P
    Molecules; 2017 Oct; 22(10):. PubMed ID: 28974024
    [No Abstract]   [Full Text] [Related]  

  • 18. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate and inhibitor specificity of kynurenine monooxygenase from Cytophaga hutchinsonii.
    Phillips RS; Anderson AD; Gentry HG; Güner OF; Bowen JP
    Bioorg Med Chem Lett; 2017 Apr; 27(8):1705-1708. PubMed ID: 28302400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.
    Meneely KM; Lamb AL
    Biochemistry; 2007 Oct; 46(42):11930-7. PubMed ID: 17900176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.