These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 22410337)
1. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform. Tao L; Kwan HK IEEE Trans Image Process; 2012 Jul; 21(7):3306-11. PubMed ID: 22410337 [TBL] [Abstract][Full Text] [Related]
2. Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform. Tao L; Kwan HK IEEE Trans Image Process; 2009 Dec; 18(12):2790-6. PubMed ID: 19651555 [TBL] [Abstract][Full Text] [Related]
3. Multichannel transforms for signal/image processing. Pitas I; Karasaridis A IEEE Trans Image Process; 1996; 5(10):1402-13. PubMed ID: 18290058 [TBL] [Abstract][Full Text] [Related]
4. An efficient algorithm to compute the complete set of discrete Gabor coefficients. Wang L; Chen CT; Lin WC IEEE Trans Image Process; 1994; 3(1):87-92. PubMed ID: 18291912 [TBL] [Abstract][Full Text] [Related]
5. Fast computation of the discrete Walsh and Hadamard transforms. Sundararajan D; Ahmad MO IEEE Trans Image Process; 1998; 7(6):898-904. PubMed ID: 18276303 [TBL] [Abstract][Full Text] [Related]
6. The generalized Gabor transform. Yao J; Krolak P; Steele C IEEE Trans Image Process; 1995; 4(7):978-88. PubMed ID: 18290047 [TBL] [Abstract][Full Text] [Related]
7. Medical image compression using 3-D Hartley transform. Shyam Sunder R; Eswaran C; Sriraam N Comput Biol Med; 2006 Sep; 36(9):958-73. PubMed ID: 16026779 [TBL] [Abstract][Full Text] [Related]
8. Fast Recursive Computation of Sliding DHT with Arbitrary Step. Kober V Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998346 [TBL] [Abstract][Full Text] [Related]
9. A fast learning algorithm for Gabor transformation. Ibrahim A; Azimi-Sadjadi MR IEEE Trans Image Process; 1996; 5(1):171-5. PubMed ID: 18285104 [TBL] [Abstract][Full Text] [Related]
10. The quantized DCT and its application to DCT-based video coding. Docef A; Kossentini F; Khanh NP; Ismaeil IR IEEE Trans Image Process; 2002; 11(3):177-87. PubMed ID: 18244622 [TBL] [Abstract][Full Text] [Related]
11. CT reconstruction from parallel and fan-beam projections by a 2-D discrete Radon transform. Averbuch A; Sedelnikov I; Shkolnisky Y IEEE Trans Image Process; 2012 Feb; 21(2):733-41. PubMed ID: 21843992 [TBL] [Abstract][Full Text] [Related]
12. Accelerating x-ray data collection using pyramid beam ray casting geometries. Averbuch A; Lifschitz G; Shkolnisky Y IEEE Trans Image Process; 2011 Feb; 20(2):523-33. PubMed ID: 20693110 [TBL] [Abstract][Full Text] [Related]
13. Image coding using dual-tree discrete wavelet transform. Yang J; Wang Y; Xu W; Dai Q IEEE Trans Image Process; 2008 Sep; 17(9):1555-69. PubMed ID: 18701394 [TBL] [Abstract][Full Text] [Related]
14. The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. Lim WQ IEEE Trans Image Process; 2010 May; 19(5):1166-80. PubMed ID: 20106737 [TBL] [Abstract][Full Text] [Related]
15. A unified reconstruction framework for both parallel-beam and variable focal-length fan-beam collimators by a Cormack-type inversion of exponential radon transform. You J; Liang Z; Zeng GL IEEE Trans Med Imaging; 1999 Jan; 18(1):59-65. PubMed ID: 10193697 [TBL] [Abstract][Full Text] [Related]
16. VOIR: a volumetric image reconstruction algorithm based on Fourier techniques for inversion of the 3-D Radon transform. Dusaussoy NJ IEEE Trans Image Process; 1996; 5(1):121-31. PubMed ID: 18285095 [TBL] [Abstract][Full Text] [Related]
17. Multiresolution image representation using combined 2-D and 1-D directional filter banks. Tanaka Y; Ikehara M; Nguyen TQ IEEE Trans Image Process; 2009 Feb; 18(2):269-80. PubMed ID: 19095538 [TBL] [Abstract][Full Text] [Related]
18. ECG coding by wavelet-based linear prediction. Ramakrishnan AG; Saha S IEEE Trans Biomed Eng; 1997 Dec; 44(12):1253-61. PubMed ID: 9401225 [TBL] [Abstract][Full Text] [Related]
19. Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using Graphics Processing Unit. Gao W; Huyen NT; Loi HS; Kemao Q Opt Express; 2009 Dec; 17(25):23147-52. PubMed ID: 20052242 [TBL] [Abstract][Full Text] [Related]
20. Fast Hartley transforms for image processing. Paik CH; Fox MD IEEE Trans Med Imaging; 1988; 7(2):149-53. PubMed ID: 18230463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]