These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22410542)

  • 21. Histological evaluation of tissue-engineered heart valves implanted in the juvenile sheep model: is there a need for in-vitro seeding?
    Dohmen PM; da Costa F; Yoshi S; Lopes SV; da Souza FP; Vilani R; Wouk AF; da Costa M; Konertz W
    J Heart Valve Dis; 2006 Nov; 15(6):823-9. PubMed ID: 17152791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A percutaneous approach to deep venous valve insufficiency with a new self-expanding venous frame valve.
    de Borst GJ; Teijink JA; Patterson M; Quijano TC; Moll FL
    J Endovasc Ther; 2003 Apr; 10(2):341-9. PubMed ID: 12877620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo.
    Neff LP; Tillman BW; Yazdani SK; Machingal MA; Yoo JJ; Soker S; Bernish BW; Geary RL; Christ GJ
    J Vasc Surg; 2011 Feb; 53(2):426-34. PubMed ID: 20934837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Successful endothelialization of porcine glutaraldehyde-fixed aortic valves in a heterotopic sheep model.
    Gulbins H; Pritisanac A; Pieper K; Goldemund A; Meiser BM; Reichart B; Daebritz S
    Ann Thorac Surg; 2006 Apr; 81(4):1472-9. PubMed ID: 16564295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells.
    Fang NT; Xie SZ; Wang SM; Gao HY; Wu CG; Pan LF
    Chin Med J (Engl); 2007 Apr; 120(8):696-702. PubMed ID: 17517187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions.
    Lichtenberg A; Tudorache I; Cebotari S; Suprunov M; Tudorache G; Goerler H; Park JK; Hilfiker-Kleiner D; Ringes-Lichtenberg S; Karck M; Brandes G; Hilfiker A; Haverich A
    Circulation; 2006 Jul; 114(1 Suppl):I559-65. PubMed ID: 16820637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow-dependent re-endothelialization of tissue-engineered heart valves.
    Lichtenberg A; Cebotari S; Tudorache I; Sturz G; Winterhalter M; Hilfiker A; Haverich A
    J Heart Valve Dis; 2006 Mar; 15(2):287-93; discussion 293-4. PubMed ID: 16607913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue-engineered bioprosthetic venous valve: a long-term study in sheep.
    Teebken OE; Puschmann C; Aper T; Haverich A; Mertsching H
    Eur J Vasc Endovasc Surg; 2003 Apr; 25(4):305-12. PubMed ID: 12651167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo remodeling potential of a novel bioprosthetic tricuspid valve in an ovine model.
    Fallon AM; Goodchild TT; Cox JL; Matheny RG
    J Thorac Cardiovasc Surg; 2014 Jul; 148(1):333-340.e1. PubMed ID: 24360254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue Engineering of Vein Valves Based on Decellularized Natural Matrices.
    Mogaldea A; Goecke T; Theodoridis K; Haverich A; Cebotari S; Hilfiker A
    Cells Tissues Organs; 2017; 204(3-4):199-209. PubMed ID: 28787732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Significance of spatial orientation of percutaneously placed bioprosthetic venous valves in an ovine model.
    Pavcnik D; Kaufman JA; Uchida BT; Case B; Correa LO; Goktay AY; Hamada A; Keller FS; Rösch J
    J Vasc Interv Radiol; 2005 Nov; 16(11):1511-6. PubMed ID: 16319159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells: optimization of cell harvest and seeding techniques.
    Roh JD; Brennan MP; Lopez-Soler RI; Fong PM; Goyal A; Dardik A; Breuer CK
    J Pediatr Surg; 2007 Jan; 42(1):198-202. PubMed ID: 17208565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep.
    Mendelson K; Aikawa E; Mettler BA; Sales V; Martin D; Mayer JE; Schoen FJ
    Cardiovasc Pathol; 2007; 16(5):277-82. PubMed ID: 17868878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells.
    Schmidt D; Dijkman PE; Driessen-Mol A; Stenger R; Mariani C; Puolakka A; Rissanen M; Deichmann T; Odermatt B; Weber B; Emmert MY; Zund G; Baaijens FP; Hoerstrup SP
    J Am Coll Cardiol; 2010 Aug; 56(6):510-20. PubMed ID: 20670763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstruction of pulmonary artery with porcine small intestinal submucosa in a lamb surgical model: Viability and growth potential.
    Boni L; Chalajour F; Sasaki T; Snyder RL; Boyd WD; Riemer RK; Reddy VM
    J Thorac Cardiovasc Surg; 2012 Oct; 144(4):963-969.e1; discussion 969. PubMed ID: 22917684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A biological alternative to alloplastic grafts in dialysis therapy: evaluation of an autologised bioartificial haemodialysis shunt vessel in a sheep model.
    Koenneker S; Teebken OE; Bonehie M; Pflaum M; Jockenhoevel S; Haverich A; Wilhelmi MH
    Eur J Vasc Endovasc Surg; 2010 Dec; 40(6):810-6. PubMed ID: 20965129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates.
    Weber B; Scherman J; Emmert MY; Gruenenfelder J; Verbeek R; Bracher M; Black M; Kortsmit J; Franz T; Schoenauer R; Baumgartner L; Brokopp C; Agarkova I; Wolint P; Zund G; Falk V; Zilla P; Hoerstrup SP
    Eur Heart J; 2011 Nov; 32(22):2830-40. PubMed ID: 21415068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.
    Tien WH; Chen HY; Berwick ZC; Krieger J; Chambers S; Dabiri D; Kassab GS
    Eur J Vasc Endovasc Surg; 2014 Oct; 48(4):459-64. PubMed ID: 25150441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Preliminary in vivo evaluation of tissue engineered venous grafts fabricated based on endothelial progenitor cells].
    Wu YF; Zhang J; Gu YQ; Li JX; Chen XS; Chen L; Chen B; Guo LR; Luo T; Liao CJ; Wu X; Yu HX; Wang ZG
    Zhonghua Wai Ke Za Zhi; 2007 Apr; 45(7):491-5. PubMed ID: 17686312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CD34 positive cells seeded on small caliber man-made vascular grafts exhibit increased antithrombogenic property compared with unfractioned mononuclear cells.
    Wang F; Xiao M; Shi S; Guan X; Yuan ZX; Lu CB; You QJ
    J Cardiovasc Surg (Torino); 2010 Dec; 51(6):885-94. PubMed ID: 21124286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.