These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22410762)

  • 1. Exploring chemistry with the fragment molecular orbital method.
    Fedorov DG; Nagata T; Kitaura K
    Phys Chem Chem Phys; 2012 Jun; 14(21):7562-77. PubMed ID: 22410762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems.
    Tanaka S; Mochizuki Y; Komeiji Y; Okiyama Y; Fukuzawa K
    Phys Chem Chem Phys; 2014 Jun; 16(22):10310-44. PubMed ID: 24740821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio fragment molecular orbital (FMO) method applied to analysis of the ligand-protein interaction in a pheromone-binding protein.
    Nemoto T; Fedorov DG; Uebayasi M; Kanazawa K; Kitaura K; Komeiji Y
    Comput Biol Chem; 2005 Dec; 29(6):434-9. PubMed ID: 16290169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GAMESS as a free quantum-mechanical platform for drug research.
    Alexeev Y; Mazanetz MP; Ichihara O; Fedorov DG
    Curr Top Med Chem; 2012; 12(18):2013-33. PubMed ID: 23110536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled-cluster theory based upon the fragment molecular-orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2005 Oct; 123(13):134103. PubMed ID: 16223271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.
    Komeiji Y; Ishikawa T; Mochizuki Y; Yamataka H; Nakano T
    J Comput Chem; 2009 Jan; 30(1):40-50. PubMed ID: 18504778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2007 Aug; 111(30):6904-14. PubMed ID: 17511437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method.
    Fukuzawa K; Kitaura K; Uebayasi M; Nakata K; Kaminuma T; Nakano T
    J Comput Chem; 2005 Jan; 26(1):1-10. PubMed ID: 15521089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the prion protein based on the fragment molecular orbital method.
    Ishikawa T; Ishikura T; Kuwata K
    J Comput Chem; 2009 Dec; 30(16):2594-601. PubMed ID: 19408278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method.
    Chudyk EI; Sarrat L; Aldeghi M; Fedorov DG; Bodkin MJ; James T; Southey M; Robinson R; Morao I; Heifetz A
    Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of many-body expansions and geometry optimizations in fragment-based methods.
    Fedorov DG; Asada N; Nakanishi I; Kitaura K
    Acc Chem Res; 2014 Sep; 47(9):2846-56. PubMed ID: 25144610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully analytic energy gradient in the fragment molecular orbital method.
    Nagata T; Brorsen K; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2011 Mar; 134(12):124115. PubMed ID: 21456653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New challenges in quantum chemistry: Quests for accurate calculations for large molecular systems.
    Morokuma K
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1149-64. PubMed ID: 12804271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RI-MP3 calculations of biomolecules based on the fragment molecular orbital method.
    Ishikawa T; Sakakura K; Mochizuki Y
    J Comput Chem; 2018 Sep; 39(24):1970-1978. PubMed ID: 30277590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Applications of the Fragment Molecular Orbital Method in Drug Discovery].
    Ishikawa T
    Yakugaku Zasshi; 2016; 136(1):121-30. PubMed ID: 26725679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.