These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 2241144)
1. The effect of high pH upon diphtheria toxin conformation and model membrane association: role of partial unfolding. Kieleczawa J; Zhao JM; Luongo CL; Dong LY; London E Arch Biochem Biophys; 1990 Nov; 282(2):214-20. PubMed ID: 2241144 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the conformation, hydrophobicity, and model membrane interactions of diphtheria toxin to those of formaldehyde-treated toxin (diphtheria toxoid): formaldehyde stabilization of the native conformation inhibits changes that allow membrane insertion. Paliwal R; London E Biochemistry; 1996 Feb; 35(7):2374-9. PubMed ID: 8652579 [TBL] [Abstract][Full Text] [Related]
3. Conformation and model membrane interactions of diphtheria toxin fragment A. Zhao JM; London E J Biol Chem; 1988 Oct; 263(30):15369-77. PubMed ID: 3170586 [TBL] [Abstract][Full Text] [Related]
4. Similarity of the conformation of diphtheria toxin at high temperature to that in the membrane-penetrating low-pH state. Zhao JM; London E Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2002-6. PubMed ID: 3457371 [TBL] [Abstract][Full Text] [Related]
5. Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Blewitt MG; Chung LA; London E Biochemistry; 1985 Sep; 24(20):5458-64. PubMed ID: 4074708 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence characterization of the low pH-induced change in diphtheria toxin conformation: effect of salt. Blewitt MG; Chao JM; McKeever B; Sarma R; London E Biochem Biophys Res Commun; 1984 Apr; 120(1):286-90. PubMed ID: 6712698 [TBL] [Abstract][Full Text] [Related]
7. Involvement of denaturation-like changes in Pseudomonas exotoxin a hydrophobicity and membrane penetration determined by characterization of pH and thermal transitions. Roles of two distinct conformationally altered states. Jiang JX; London E J Biol Chem; 1990 May; 265(15):8636-41. PubMed ID: 2111323 [TBL] [Abstract][Full Text] [Related]
8. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin. Wang Y; Kachel K; Pablo L; London E Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065 [TBL] [Abstract][Full Text] [Related]
9. Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation. Jiang JX; Abrams FS; London E Biochemistry; 1991 Apr; 30(16):3857-64. PubMed ID: 1850289 [TBL] [Abstract][Full Text] [Related]
10. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Malenbaum SE; Collier RJ; London E Biochemistry; 1998 Dec; 37(51):17915-22. PubMed ID: 9922159 [TBL] [Abstract][Full Text] [Related]
11. Structure of the Diphtheria Toxin at Acidic pH: Implications for the Conformational Switching of the Translocation Domain. Rodnin MV; Kashipathy MM; Kyrychenko A; Battaile KP; Lovell S; Ladokhin AS Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33171806 [TBL] [Abstract][Full Text] [Related]
12. Linked thermal and solute perturbation analysis of cooperative domain interactions in proteins. Structural stability of diphtheria toxin. Ramsay G; Freire E Biochemistry; 1990 Sep; 29(37):8677-83. PubMed ID: 2271548 [TBL] [Abstract][Full Text] [Related]
13. Energetics of diphtheria toxin membrane insertion and translocation: calorimetric characterization of the acid pH induced transition. Ramsay G; Montgomery D; Berger D; Freire E Biochemistry; 1989 Jan; 28(2):529-33. PubMed ID: 2713329 [TBL] [Abstract][Full Text] [Related]
14. Immunochemical analysis of the structure of diphtheria toxin shows all three domains undergo structural changes at low pH. Tortorella D; Sesardic D; Dawes CS; London E J Biol Chem; 1995 Nov; 270(46):27439-45. PubMed ID: 7499200 [TBL] [Abstract][Full Text] [Related]
15. pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines. Kurnikov IV; Kyrychenko A; Flores-Canales JC; Rodnin MV; Simakov N; Vargas-Uribe M; Posokhov YO; Kurnikova M; Ladokhin AS J Mol Biol; 2013 Aug; 425(15):2752-64. PubMed ID: 23648837 [TBL] [Abstract][Full Text] [Related]
17. Does fusion of domains from unrelated proteins affect their folding pathways and the structural changes involved in their function? A case study with the diphtheria toxin T domain. Chenal A; Nizard P; Forge V; Pugnière M; Roy MO; Mani JC; Guillain F; Gillet D Protein Eng; 2002 May; 15(5):383-91. PubMed ID: 12034858 [TBL] [Abstract][Full Text] [Related]
18. Solution and membrane-bound chaperone activity of the diphtheria toxin translocation domain towards the catalytic domain. Chassaing A; Pichard S; Araye-Guet A; Barbier J; Forge V; Gillet D FEBS J; 2011 Dec; 278(23):4516-25. PubMed ID: 21332941 [TBL] [Abstract][Full Text] [Related]
19. Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies. Zhan H; Choe S; Huynh PD; Finkelstein A; Eisenberg D; Collier RJ Biochemistry; 1994 Sep; 33(37):11254-63. PubMed ID: 7537085 [TBL] [Abstract][Full Text] [Related]
20. The pH-Dependent Trigger in Diphtheria Toxin T Domain Comes with a Safety Latch. Rodnin MV; Li J; Gross ML; Ladokhin AS Biophys J; 2016 Nov; 111(9):1946-1953. PubMed ID: 27806276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]