These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22411581)

  • 1. Multisensory integration in the estimation of walked distances.
    Campos JL; Butler JS; Bülthoff HH
    Exp Brain Res; 2012 May; 218(4):551-65. PubMed ID: 22411581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of visual and proprioceptive information to travelled distance estimation during changing sensory congruencies.
    Campos JL; Butler JS; Bülthoff HH
    Exp Brain Res; 2014 Oct; 232(10):3277-89. PubMed ID: 24961739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The brain weights body-based cues higher than vision when estimating walked distances.
    Campos JL; Byrne P; Sun HJ
    Eur J Neurosci; 2010 May; 31(10):1889-98. PubMed ID: 20584194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viewpoint oscillation improves the perception of distance travelled in static observers but not during treadmill walking.
    Bossard M; Goulon C; Mestre D
    Exp Brain Res; 2020 Apr; 238(4):1073-1083. PubMed ID: 32211928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal visual-vestibular integration under conditions of conflicting intersensory motion profiles.
    Butler JS; Campos JL; Bülthoff HH
    Exp Brain Res; 2015 Feb; 233(2):587-97. PubMed ID: 25361642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of vestibular and proprioceptive signals for spatial updating.
    Frissen I; Campos JL; Souman JL; Ernst MO
    Exp Brain Res; 2011 Jul; 212(2):163-76. PubMed ID: 21590262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking.
    Saunders JA
    J Vis; 2014 Mar; 14(3):24. PubMed ID: 24648194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vestibular capture of the perceived distance of passive linear self motion.
    Harris LR; Jenkin M; Zikovitz DC
    Arch Ital Biol; 2000 Jan; 138(1):63-72. PubMed ID: 10604034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path integration: effect of curved path complexity and sensory system on blindfolded walking.
    Koutakis P; Mukherjee M; Vallabhajosula S; Blanke DJ; Stergiou N
    Gait Posture; 2013 Feb; 37(2):154-8. PubMed ID: 22840893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual estimation of travel distance during walking.
    Lappe M; Frenz H
    Exp Brain Res; 2009 Dec; 199(3-4):369-75. PubMed ID: 19533107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus Onset Asynchrony Affects Weighting-related Event-related Spectral Power in Self-motion Perception.
    Townsend B; Legere JK; von Mohrenschildt M; Shedden JM
    J Cogn Neurosci; 2023 Jul; 35(7):1092-1107. PubMed ID: 37043240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proprioceptive Distance Cues Restore Perfect Size Constancy in Grasping, but Not Perception, When Vision Is Limited.
    Chen J; Sperandio I; Goodale MA
    Curr Biol; 2018 Mar; 28(6):927-932.e4. PubMed ID: 29502946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multisensory integration in the estimation of relative path length.
    Sun HJ; Campos JL; Chan GS
    Exp Brain Res; 2004 Jan; 154(2):246-54. PubMed ID: 14685814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual-vestibular integration during self-motion perception in younger and older adults.
    Ramkhalawansingh R; Butler JS; Campos JL
    Psychol Aging; 2018 Aug; 33(5):798-813. PubMed ID: 29999391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Egocentric perception through interaction among many sensory systems.
    Ohmi M
    Brain Res Cogn Brain Res; 1996 Dec; 5(1-2):87-96. PubMed ID: 9049074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisensory Interactions in Virtual Reality: Optic Flow Reduces Vestibular Sensitivity, but Only for Congruent Planes of Motion.
    Gallagher M; Choi R; Ferrè ER
    Multisens Res; 2020 Oct; 33(6):625-644. PubMed ID: 31972542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of optostatic and optokinetic cues to the perception of vertical.
    Niehof N; Perdreau F; Koppen M; Medendorp WP
    J Neurophysiol; 2019 Aug; 122(2):480-489. PubMed ID: 31166820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of visual and nonvisual sensory inputs to walked distance in a blind-walking task.
    Ellard CG; Shaughnessy SC
    Perception; 2003; 32(5):567-78. PubMed ID: 12854643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of stereo vision in visual-vestibular integration.
    Butler JS; Campos JL; Bülthoff HH; Smith ST
    Seeing Perceiving; 2011; 24(5):453-70. PubMed ID: 21888763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.