These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 22411582)
1. Reaching to recover balance in unpredictable circumstances: is online visual control of the reach-to-grasp reaction necessary or sufficient? Cheng KC; McKay SM; King EC; Maki BE Exp Brain Res; 2012 May; 218(4):589-99. PubMed ID: 22411582 [TBL] [Abstract][Full Text] [Related]
2. Does aging impair the capacity to use stored visuospatial information or online visual control to guide reach-to-grasp reactions evoked by unpredictable balance perturbation? Cheng KC; McKay SM; King EC; Maki BE J Gerontol A Biol Sci Med Sci; 2012 Nov; 67(11):1238-45. PubMed ID: 22511290 [TBL] [Abstract][Full Text] [Related]
3. The use of peripheral vision to guide perturbation-evoked reach-to-grasp balance-recovery reactions. King EC; McKay SM; Cheng KC; Maki BE Exp Brain Res; 2010 Nov; 207(1-2):105-18. PubMed ID: 20957351 [TBL] [Abstract][Full Text] [Related]
4. Do aging and dual-tasking impair the capacity to store and retrieve visuospatial information needed to guide perturbation-evoked reach-to-grasp reactions? Cheng KC; Pratt J; Maki BE PLoS One; 2013; 8(11):e79401. PubMed ID: 24223942 [TBL] [Abstract][Full Text] [Related]
5. Initiation of rapid reach-and-grasp balance reactions: is a pre-formed visuospatial map used in controlling the initial arm trajectory? Ghafouri M; McIlroy WE; Maki BE Exp Brain Res; 2004 Apr; 155(4):532-6. PubMed ID: 14985902 [TBL] [Abstract][Full Text] [Related]
6. Stepping to recover balance in complex environments: is online visual control of the foot motion necessary or sufficient? Scovil CY; Zettel JL; Maki BE Neurosci Lett; 2008 Nov; 445(1):108-12. PubMed ID: 18771705 [TBL] [Abstract][Full Text] [Related]
7. Effects of spatial-memory decay and dual-task interference on perturbation-evoked reach-to-grasp reactions in the absence of online visual feedback. Cheng KC; Pratt J; Maki BE Hum Mov Sci; 2013 Apr; 32(2):328-42. PubMed ID: 23635599 [TBL] [Abstract][Full Text] [Related]
8. Parallels in control of voluntary and perturbation-evoked reach-to-grasp movements: EMG and kinematics. Gage WH; Zabjek KF; Hill SW; McIlroy WE Exp Brain Res; 2007 Aug; 181(4):627-37. PubMed ID: 17487477 [TBL] [Abstract][Full Text] [Related]
9. Can we use peripheral vision to create a visuospatial map for compensatory reach-to-grasp reactions? Williams L; Miyasike-daSilva V; Staines WR; Prentice SD; McIlroy WE Exp Brain Res; 2022 Oct; 240(10):2739-2746. PubMed ID: 36107217 [TBL] [Abstract][Full Text] [Related]
10. Role of peripheral vision in rapid perturbation-evoked reach-to-grasp reactions. Akram SB; Miyasike-daSilva V; Van Ooteghem K; McIlroy WE Exp Brain Res; 2013 Sep; 229(4):609-19. PubMed ID: 23811736 [TBL] [Abstract][Full Text] [Related]
11. The influence of handrail predictability on compensatory arm reactions in response to a loss of balance. Weaver TB; Tokuno CD Gait Posture; 2013 Jun; 38(2):293-8. PubMed ID: 23280124 [TBL] [Abstract][Full Text] [Related]
12. Does the "eyes lead the hand" principle apply to reach-to-grasp movements evoked by unexpected balance perturbations? King EC; Lee TA; McKay SM; Scovil CY; Peters AL; Pratt J; Maki BE Hum Mov Sci; 2011 Apr; 30(2):368-83. PubMed ID: 21035219 [TBL] [Abstract][Full Text] [Related]
13. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease. Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195 [TBL] [Abstract][Full Text] [Related]
14. Resolving conflicts in task demands during balance recovery: does holding an object inhibit compensatory grasping? Bateni H; Zecevic A; McIlroy WE; Maki BE Exp Brain Res; 2004 Jul; 157(1):49-58. PubMed ID: 14758453 [TBL] [Abstract][Full Text] [Related]
15. Adaptation of reach-to-grasp movement in response to force perturbations. Rand MK; Shimansky Y; Stelmach GE; Bloedel JR Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893 [TBL] [Abstract][Full Text] [Related]
16. Transient inhibition of primary motor cortex suppresses hand muscle responses during a reactive reach to grasp. Bolton DAE; Patel R; Staines WR; McIlroy WE Neurosci Lett; 2011 Oct; 504(2):83-87. PubMed ID: 21925570 [TBL] [Abstract][Full Text] [Related]
17. Viewing geometry determines the contribution of binocular vision to the online control of grasping. Keefe BD; Watt SJ Exp Brain Res; 2017 Dec; 235(12):3631-3643. PubMed ID: 28900689 [TBL] [Abstract][Full Text] [Related]
18. The moveable handhold: a new paradigm to study visual contributions to the control of balance-recovery reactions. Cheng KC; McKay SM; King EC; Tung JY; Lee TA; Scovil CY; Maki BE Gait Posture; 2009 Feb; 29(2):339-42. PubMed ID: 18838270 [TBL] [Abstract][Full Text] [Related]
19. Control of aperture closure initiation during trunk-assisted reach-to-grasp movements. Rand MK; Van Gemmert AW; Hossain AB; Shimansky YP; Stelmach GE Exp Brain Res; 2012 Jun; 219(2):293-304. PubMed ID: 22526948 [TBL] [Abstract][Full Text] [Related]
20. Gaze behavior of older adults during rapid balance-recovery reactions. Zettel JL; McIlroy WE; Maki BE J Gerontol A Biol Sci Med Sci; 2008 Aug; 63(8):885-91. PubMed ID: 18772479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]