These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22411977)

  • 1. Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex.
    Long F; Su CC; Lei HT; Bolla JR; Do SV; Yu EW
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1047-58. PubMed ID: 22411977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Cus efflux system removes toxic ions via a methionine shuttle.
    Su CC; Long F; Yu EW
    Protein Sci; 2011 Jan; 20(1):6-18. PubMed ID: 20981744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport.
    Long F; Su CC; Zimmermann MT; Boyken SE; Rajashankar KR; Jernigan RL; Yu EW
    Nature; 2010 Sep; 467(7314):484-8. PubMed ID: 20865003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli.
    Su CC; Long F; Zimmermann MT; Rajashankar KR; Jernigan RL; Yu EW
    Nature; 2011 Feb; 470(7335):558-62. PubMed ID: 21350490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charged amino acids (R83, E567, D617, E625, R669, and K678) of CusA are required for metal ion transport in the Cus efflux system.
    Su CC; Long F; Lei HT; Bolla JR; Do SV; Rajashankar KR; Yu EW
    J Mol Biol; 2012 Sep; 422(3):429-41. PubMed ID: 22683351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the membrane fusion protein CusB from Escherichia coli.
    Su CC; Yang F; Long F; Reyon D; Routh MD; Kuo DW; Mokhtari AK; Van Ornam JD; Rabe KL; Hoy JA; Lee YJ; Rajashankar KR; Yu EW
    J Mol Biol; 2009 Oct; 393(2):342-55. PubMed ID: 19695261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPR Spectroscopy Targets Structural Changes in the E. coli Membrane Fusion CusB upon Cu(I) Binding.
    Meir A; Abdelhai A; Moskovitz Y; Ruthstein S
    Biophys J; 2017 Jun; 112(12):2494-2502. PubMed ID: 28636907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural mechanisms of heavy-metal extrusion by the Cus efflux system.
    Delmar JA; Su CC; Yu EW
    Biometals; 2013 Aug; 26(4):593-607. PubMed ID: 23657864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF.
    Mealman TD; Zhou M; Affandi T; Chacón KN; Aranguren ME; Blackburn NJ; Wysocki VH; McEvoy MM
    Biochemistry; 2012 Aug; 51(34):6767-75. PubMed ID: 22812620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli.
    Mealman TD; Blackburn NJ; McEvoy MM
    Curr Top Membr; 2012; 69():163-96. PubMed ID: 23046651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM Structures of CusA Reveal a Mechanism of Metal-Ion Export.
    Moseng MA; Lyu M; Pipatpolkai T; Glaza P; Emerson CC; Stewart PL; Stansfeld PJ; Yu EW
    mBio; 2021 Apr; 12(2):. PubMed ID: 33820823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins.
    Chacón KN; Mealman TD; McEvoy MM; Blackburn NJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15373-8. PubMed ID: 25313055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization and preliminary X-ray crystallographic analysis of Escherichia coli CusB.
    Xu Y; Yun BY; Sim SH; Lee K; Ha NC
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jul; 65(Pt 7):743-5. PubMed ID: 19574656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.
    Kulathila R; Kulathila R; Indic M; van den Berg B
    PLoS One; 2011 Jan; 6(1):e15610. PubMed ID: 21249122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump.
    Yum S; Xu Y; Piao S; Sim SH; Kim HM; Jo WS; Kim KJ; Kweon HS; Jeong MH; Jeon H; Lee K; Ha NC
    J Mol Biol; 2009 Apr; 387(5):1286-97. PubMed ID: 19254725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites.
    Yun BY; Xu Y; Piao S; Kim N; Yoon JH; Cho HS; Lee K; Ha NC
    J Microbiol; 2010 Dec; 48(6):829-35. PubMed ID: 21221942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptor protein mediates dynamic pump assembly for bacterial metal efflux.
    Santiago AG; Chen TY; Genova LA; Jung W; George Thompson AM; McEvoy MM; Chen P
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):6694-6699. PubMed ID: 28607072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of CusC review conformational changes accompanying folding and transmembrane channel formation.
    Lei HT; Bolla JR; Bishop NR; Su CC; Yu EW
    J Mol Biol; 2014 Jan; 426(2):403-11. PubMed ID: 24099674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system.
    Bagai I; Liu W; Rensing C; Blackburn NJ; McEvoy MM
    J Biol Chem; 2007 Dec; 282(49):35695-702. PubMed ID: 17893146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of the EmrAB-TolC efflux complex from E. coli.
    Yousefian N; Ornik-Cha A; Poussard S; Decossas M; Berbon M; Daury L; Taveau JC; Dupuy JW; Đorđević-Marquardt S; Lambert O; Pos KM
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183488. PubMed ID: 33065135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.