BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22412381)

  • 21. Modulation of protein-DNA binding reveals mechanisms of spatiotemporal gene control in early
    Syed S; Duan Y; Lim B
    Elife; 2023 Nov; 12():. PubMed ID: 37934571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences.
    Sinha S; Blanchette M; Tompa M
    BMC Bioinformatics; 2004 Oct; 5():170. PubMed ID: 15511292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving Enhancer Identification with a Multi-Classifier Stacked Ensemble Model.
    Mir BA; Rehman MU; Tayara H; Chong KT
    J Mol Biol; 2023 Dec; 435(23):168314. PubMed ID: 37852600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional characterization of QT interval associated
    Gunamalai L; Singh P; Berg B; Shi L; Sanchez E; Smith A; Breton G; Bedford MT; Balciunas D; Kapoor A
    bioRxiv; 2024 Mar; ():. PubMed ID: 38559211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 'Enhancing' skeletal muscle and stem cells in three-dimensions: genome regulation of skeletal muscle in development and disease.
    Romero MA; Pyle AD
    Curr Opin Genet Dev; 2023 Dec; 83():102133. PubMed ID: 37951138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovering transcriptional regulatory regions in Drosophila by a nonalignment method for phylogenetic footprinting.
    Sosinsky A; Honig B; Mann RS; Califano A
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6305-10. PubMed ID: 17395715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary innovation in conserved regulatory elements across the mammalian tree of life.
    Uebbing S; Kocher AA; Baumgartner M; Ji Y; Bai S; Xing X; Nottoli T; Noonan JP
    bioRxiv; 2024 Jan; ():. PubMed ID: 38352419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discerning the Role of DNA Sequence, Shape, and Flexibility in Recognition by
    Murthy S; Dey U; Olymon K; Abbas E; Yella VR; Kumar A
    ACS Chem Biol; 2024 Jun; ():. PubMed ID: 38902964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development.
    Jindal GA; Bantle AT; Solvason JJ; Grudzien JL; D'Antonio-Chronowska A; Lim F; Le SH; Song BP; Ragsac MF; Klie A; Larsen RO; Frazer KA; Farley EK
    Dev Cell; 2023 Nov; 58(21):2206-2216.e5. PubMed ID: 37848026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EnhancerTracker: Comparing cell-type-specific enhancer activity of DNA sequence triplets via an ensemble of deep convolutional neural networks.
    Garza AB; Garcia R; Solis LM; Halfon MS; Girgis HZ
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iterative deep learning-design of human enhancers exploits condensed sequence grammar to achieve cell type-specificity.
    Yin C; Hair SC; Byeon GW; Bromley P; Meuleman W; Seelig G
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancer grammar in development, evolution, and disease: dependencies and interplay.
    Jindal GA; Farley EK
    Dev Cell; 2021 Mar; 56(5):575-587. PubMed ID: 33689769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From Genotype to Phenotype: How Enhancers Control Gene Expression and Cell Identity in Hematopoiesis.
    Mulet-Lazaro R; Delwel R
    Hemasphere; 2023 Nov; 7(11):e969. PubMed ID: 37953829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of protein-DNA binding reveals mechanisms of spatiotemporal gene control in early
    Syed S; Duan Y; Lim B
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning dissection of human accelerated regions in primate neurodevelopment.
    Whalen S; Inoue F; Ryu H; Fair T; Markenscoff-Papadimitriou E; Keough K; Kircher M; Martin B; Alvarado B; Elor O; Laboy Cintron D; Williams A; Hassan Samee MA; Thomas S; Krencik R; Ullian EM; Kriegstein A; Rubenstein JL; Shendure J; Pollen AA; Ahituv N; Pollard KS
    Neuron; 2023 Mar; 111(6):857-873.e8. PubMed ID: 36640767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification.
    Ahmad SM; Busser BW; Huang D; Cozart EJ; Michaud S; Zhu X; Jeffries N; Aboukhalil A; Bulyk ML; Ovcharenko I; Michelson AM
    Development; 2014 Feb; 141(4):878-88. PubMed ID: 24496624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network.
    Busser BW; Huang D; Rogacki KR; Lane EA; Shokri L; Ni T; Gamble CE; Gisselbrecht SS; Zhu J; Bulyk ML; Ovcharenko I; Michelson AM
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20768-73. PubMed ID: 23184988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SEAMoD: A fully interpretable neural network for cis-regulatory analysis of differentially expressed genes.
    Bhogale S; Seward C; Stubbs L; Sinha S
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three distinct mechanisms, Notch instructive, permissive, and independent, regulate the expression of two different pericardial genes to specify cardiac cell subtypes.
    Panta M; Kump AJ; Dalloul JM; Schwab KR; Ahmad SM
    PLoS One; 2020; 15(10):e0241191. PubMed ID: 33108408
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.