These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22413285)

  • 21. Soluble copper phthalocyanine applied for organic solar cells.
    Zhang T; Piao L; Zha S; Jiang C; Xu Z; Gao L; Wu Q; Kong C
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9641-4. PubMed ID: 22413262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm.
    Ogomi Y; Morita A; Tsukamoto S; Saitho T; Fujikawa N; Shen Q; Toyoda T; Yoshino K; Pandey SS; Ma T; Hayase S
    J Phys Chem Lett; 2014 Mar; 5(6):1004-11. PubMed ID: 26270980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance Enhancement of an MoS
    Ali MH; Al Mamun MA; Haque MD; Rahman MF; Hossain MK; Md Touhidul Islam AZ
    ACS Omega; 2023 Feb; 8(7):7017-7029. PubMed ID: 36844558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.
    Chiang YF; Jeng JY; Lee MH; Peng SR; Chen P; Guo TF; Wen TC; Hsu YJ; Hsu CM
    Phys Chem Chem Phys; 2014 Apr; 16(13):6033-40. PubMed ID: 24553998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS).
    Kim MS; Chun DM; Choi JO; Lee JC; Kim YH; Kim KS; Lee CS; Ahn SH
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3384-8. PubMed ID: 22849129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of an Inorganic Interlayer on Exciton Separation in Hybrid Solar Cells.
    Armstrong CL; Price MB; Muñoz-Rojas D; Davis NJ; Abdi-Jalebi M; Friend RH; Greenham NC; MacManus-Driscoll JL; Böhm ML; Musselman KP
    ACS Nano; 2015 Dec; 9(12):11863-71. PubMed ID: 26548399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly (3-hexylthiophene): graphene oxide bulk heterojunction photovoltaic devices.
    Hill CM; Zhu Y; Pan S
    ACS Nano; 2011 Feb; 5(2):942-51. PubMed ID: 21294531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the device performance of Sb2S3-sensitized heterojunction solar cells by embedding Au nanoparticles in the hole-conducting polymer layer.
    Lim CS; Im SH; Kim HJ; Chang JA; Lee YH; Seok SI
    Phys Chem Chem Phys; 2012 Mar; 14(10):3622-6. PubMed ID: 22314628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effective Passivation and Tunneling Hybrid a-SiO
    Gao M; Wan Y; Li Y; Han B; Song W; Xu F; Zhao L; Ma Z
    ACS Appl Mater Interfaces; 2017 May; 9(20):17565-17575. PubMed ID: 28463491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Layer-by-layer assembled multilayer TiO(x) for efficient electron acceptor in polymer hybrid solar cells.
    Kang H; Lee C; Yoon SC; Cho CH; Cho J; Kim BJ
    Langmuir; 2010 Nov; 26(22):17589-95. PubMed ID: 20925374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiency enhancement of polymer solar cells by patterning nanoscale indium tin oxide layer.
    Pang C; Hwang J; Park K; Jung D; Kim H; Chae H
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5279-83. PubMed ID: 19198438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.
    Lim S; Kim Y; Lee J; Han CJ; Kang J; Kim J
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9346-50. PubMed ID: 25971063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design considerations for electrode buffer layer materials in polymer solar cells.
    Bilby D; Frieberg B; Kramadhati S; Green P; Kim J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14964-74. PubMed ID: 25116039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Investigation on performance enhancement of bulk heterojunction organic solar cells].
    Su MC; Yi LX; Wang Y; Shi YM; Liang CJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):740-4. PubMed ID: 18619287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of chemical structure of interface modifier of TiO2 on photovoltaic properties of poly(3-hexylthiophene)/TiO2 layered solar cells.
    Hsu CW; Wang L; Su WF
    J Colloid Interface Sci; 2009 Jan; 329(1):182-7. PubMed ID: 18947832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient perovskite solar cells by combination use of Au nanoparticles and insulating metal oxide.
    Zhang C; Luo Q; Shi J; Yue L; Wang Z; Chen X; Huang S
    Nanoscale; 2017 Feb; 9(8):2852-2864. PubMed ID: 28169383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO
    Wu F; Qiao Q; Bahrami B; Chen K; Pathak R; Tong Y; Li X; Zhang T; Jian R
    Nanotechnology; 2018 May; 29(21):215403. PubMed ID: 29521645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3-D solar cells by electrochemical-deposited Se layer as extremely-thin absorber and hole conducting layer on nanocrystalline TiO2 electrode.
    Nguyen DC; Tanaka S; Nishino H; Manabe K; Ito S
    Nanoscale Res Lett; 2013 Jan; 8(1):8. PubMed ID: 23286700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.