These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22413337)

  • 1. The release of hydrogen reaction of graphene modified NaAlH4.
    Zhang S; Zhou Z; Liu J; Kan M
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9993-6. PubMed ID: 22413337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafine Nanocrystalline CeO2@C-Containing NaAlH4 with Fast Kinetics and Good Reversibility for Hydrogen Storage.
    Zhang X; Liu Y; Wang K; Li Y; Gao M; Pan H
    ChemSusChem; 2015 Dec; 8(24):4180-8. PubMed ID: 26632764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinetic enhancement of hydrogen cycling in NaAlH(4) by melt infusion into nanoporous carbon aerogel.
    Stephens RD; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE
    Nanotechnology; 2009 May; 20(20):204018. PubMed ID: 19420666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen-isotope scrambling on doped sodium alanate.
    Bellosta von Colbe JM; Schmidt W; Felderhoff M; Bogdanović B; Schüth F
    Angew Chem Int Ed Engl; 2006 May; 45(22):3663-5. PubMed ID: 16642519
    [No Abstract]   [Full Text] [Related]  

  • 5. Destabilisation of complex hydrides through size effects.
    Christian M; Aguey-Zinsou KF
    Nanoscale; 2010 Dec; 2(12):2587-90. PubMed ID: 20886168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor.
    Stavila V; Bhakta RK; Alam TM; Majzoub EH; Allendorf MD
    ACS Nano; 2012 Nov; 6(11):9807-17. PubMed ID: 23075161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ high pressure NMR study of the direct synthesis of NaAlH4.
    Humphries TD; Birkmire D; Hauback BC; McGrady GS; Jensen CM
    Phys Chem Chem Phys; 2013 May; 15(17):6179-81. PubMed ID: 23519072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory.
    Vegge T
    Phys Chem Chem Phys; 2006 Nov; 8(42):4853-61. PubMed ID: 17066174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of particle size on hydrogen release from sodium alanate nanoparticles.
    Mueller T; Ceder G
    ACS Nano; 2010 Oct; 4(10):5647-56. PubMed ID: 20849095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-deuterium exchange experiments to probe the decomposition reaction of sodium alanate.
    Borgschulte A; Züttel A; Hug P; Barkhordarian G; Eigen N; Dornheim M; Bormann R; Ramirez-Cuesta AJ
    Phys Chem Chem Phys; 2008 Jul; 10(27):4045-55. PubMed ID: 18597019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cost-Effective Hierarchical Catalysts for Promoting Hydrogen Release from Complex Hydrides.
    Yang CH; Hsu CP; Lee SL; Wang KW; Chang JK
    ChemSusChem; 2015 Aug; 8(16):2713-8. PubMed ID: 26150091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles study of hydrogen vacancies in sodium alanate with Ti substitution.
    Wang H; Tezuka A; Ogawa H; Ikeshoji T
    J Phys Condens Matter; 2010 May; 22(20):205503. PubMed ID: 21393708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton NMR studies of the NaAlH4 structure.
    Valiente-Banuet LE; Majer G; Müller K
    J Magn Reson; 2009 Oct; 200(2):280-4. PubMed ID: 19651530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An x-ray photoemission electron microscopy study of the formation of Ti-Al phases in 4 mol% TiCl3 catalyzed NaAlH4 during high energy ball milling.
    Dobbins T; Abrecht M; Uprety Y; Moore K
    Nanotechnology; 2009 May; 20(20):204014. PubMed ID: 19420662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen dynamics in Na3AlH6: a combined density functional theory and quasielastic neutron scattering study.
    Voss J; Shi Q; Jacobsen HS; Zamponi M; Lefmann K; Vegge T
    J Phys Chem B; 2007 Apr; 111(15):3886-92. PubMed ID: 17388555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.
    Wang H; Sofer Z; Eng AY; Pumera M
    Chemistry; 2014 Nov; 20(46):14946-50. PubMed ID: 25293511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides.
    Eng AY; Poh HL; Šaněk F; Maryško M; Matějková S; Sofer Z; Pumera M
    ACS Nano; 2013 Jul; 7(7):5930-9. PubMed ID: 23777325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Electrocatalyst for the Hydrogen Evolution Reaction Derived from Polyoxotungstate/Polypyrrole/Graphene.
    Wang XL; Tang YJ; Huang W; Liu CH; Dong LZ; Li SL; Lan YQ
    ChemSusChem; 2017 Jun; 10(11):2402-2407. PubMed ID: 28337857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of nitrogen-doped graphene supported AuPd-CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature.
    Wang ZL; Yan JM; Zhang YF; Ping Y; Wang HL; Jiang Q
    Nanoscale; 2014 Mar; 6(6):3073-7. PubMed ID: 24526095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydrogenation Properties and Catalytic Mechanism of the K
    Mustafa NS; Yahya MS; Sazelee N; Ali NA; Ismail M
    ACS Omega; 2018 Dec; 3(12):17100-17107. PubMed ID: 31458330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.