These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22413342)
1. Growth of carbon nanostructures using a Pd-based catalyst. Segura RA; Hevia S; Häberle P J Nanosci Nanotechnol; 2011 Nov; 11(11):10036-46. PubMed ID: 22413342 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of carbon nanostructures--in-situ study of carbon deposition parameters. Mitri SP; Sotirchos SV J Nanosci Nanotechnol; 2007 Jul; 7(7):2451-8. PubMed ID: 17663264 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method. Abdulkareem AS; Afolabi AS; Iyuke SE; Vz Pienaar HC J Nanosci Nanotechnol; 2007 Sep; 7(9):3233-8. PubMed ID: 18019155 [TBL] [Abstract][Full Text] [Related]
4. In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration processes. Liu RJ; Crozier PA; Smith CM; Hucul DA; Blackson J; Salaita G Microsc Microanal; 2004 Feb; 10(1):77-85. PubMed ID: 15306069 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of beaded and entwined carbon nanofibers in Ni:Al alloy catalyst. Pradhan D; Sharon M; Kumar M; Ando Y J Nanosci Nanotechnol; 2007 Mar; 7(3):1034-8. PubMed ID: 17450871 [TBL] [Abstract][Full Text] [Related]
6. Highly ordered carbon nanotubes based on porous aluminum oxide: fabrication and mechanism. Pan H; Gao H; Lim SH; Feng YP; Lin J J Nanosci Nanotechnol; 2005 Feb; 5(2):277-81. PubMed ID: 15853148 [TBL] [Abstract][Full Text] [Related]
7. Catalyst-free template-synthesis of ZnO nanopetals at 60 degrees C. Pan H; Feng YP; Lin J; Liu CJ; Wee TS J Nanosci Nanotechnol; 2007 Feb; 7(2):696-9. PubMed ID: 17450816 [TBL] [Abstract][Full Text] [Related]
8. The role of destabilization of palladium hydride in the hydrogen uptake of Pd-containing activated carbons. Bhat VV; Contescu CI; Gallego NC Nanotechnology; 2009 May; 20(20):204011. PubMed ID: 19420659 [TBL] [Abstract][Full Text] [Related]
9. The large-scale synthesis of one-dimensional TiO2 nanostructures using palladium as catalyst at low temperature. Xia M; Zhang Q; Li H; Dai G; Yu H; Wang T; Zou B; Wang Y Nanotechnology; 2009 Feb; 20(5):055605. PubMed ID: 19417352 [TBL] [Abstract][Full Text] [Related]
10. Process synthesis and optimization for the production of carbon nanostructures. Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958 [TBL] [Abstract][Full Text] [Related]
11. Influence of the nanoscale support on carbon deposition and carbon elimination over Ni/gamma-Al2O3 catalyst for CH4 conversion. Yang Y; Xu H; Li W J Nanosci Nanotechnol; 2004 Sep; 4(7):891-5. PubMed ID: 15570978 [TBL] [Abstract][Full Text] [Related]
12. Production of hydrogen by autothermal reforming of propane over Ni/delta-Al2O3. Lee HR; Lee KY; Park NC; Shin JS; Moon DJ; Lee BG; Kim YC J Nanosci Nanotechnol; 2006 Nov; 6(11):3396-8. PubMed ID: 17252774 [TBL] [Abstract][Full Text] [Related]
13. Effects of hydrogen on the formation of aligned carbon nanotubes by chemical vapor deposition. Dong L; Jiao J; Foxley S; Tuggle DW; Mosher CL; Grathoff GH J Nanosci Nanotechnol; 2002 Apr; 2(2):155-60. PubMed ID: 12908303 [TBL] [Abstract][Full Text] [Related]
14. Influence of catalyst structures on carbon nanotubes growth via methane-CVD. Wang H; Sun L; Wang S; Xiao Z J Nanosci Nanotechnol; 2009 Feb; 9(2):848-52. PubMed ID: 19441406 [TBL] [Abstract][Full Text] [Related]
16. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst. Ouyang Y; Chen L; Liu QX; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):317-20. PubMed ID: 18249582 [TBL] [Abstract][Full Text] [Related]
17. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256 [TBL] [Abstract][Full Text] [Related]
18. Wet-chemical synthesis of palladium nanosprings. Liu L; Yoo SH; Lee SA; Park S Nano Lett; 2011 Sep; 11(9):3979-82. PubMed ID: 21819102 [TBL] [Abstract][Full Text] [Related]
19. In situ monitoring of the acetylene decomposition and gas temperature at reaction conditions for the deposition of carbon nanotubes using linear Raman scattering. Reinhold-López K; Braeuer A; Popovska N; Leipertz A Opt Express; 2010 Aug; 18(17):18223-8. PubMed ID: 20721212 [TBL] [Abstract][Full Text] [Related]
20. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. Rümmeli MH; Bachmatiuk A; Scott A; Börrnert F; Warner JH; Hoffman V; Lin JH; Cuniberti G; Büchner B ACS Nano; 2010 Jul; 4(7):4206-10. PubMed ID: 20586480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]