These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22413861)

  • 1. Stabilization of graphene sheets by a structured benzene/hexafluorobenzene mixed solvent.
    Oyer AJ; Carrillo JM; Hire CC; Schniepp HC; Asandei AD; Dobrynin AV; Adamson DH
    J Am Chem Soc; 2012 Mar; 134(11):5018-21. PubMed ID: 22413861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-scale observation of rotational misorientation in suspended few-layer graphene sheets.
    Singh MK; Titus E; Gonçalves G; Marques PA; Bdikin I; Kholkin AL; Gracio JJ
    Nanoscale; 2010 May; 2(5):700-8. PubMed ID: 20648314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation.
    Shih CJ; Lin S; Strano MS; Blankschtein D
    J Am Chem Soc; 2010 Oct; 132(41):14638-48. PubMed ID: 20879739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide.
    Long D; Li W; Ling L; Miyawaki J; Mochida I; Yoon SH
    Langmuir; 2010 Oct; 26(20):16096-102. PubMed ID: 20863088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly conducting graphene sheets and Langmuir-Blodgett films.
    Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H
    Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphitization behaviour of chemically derived graphene sheets.
    Long D; Li W; Qiao W; Miyawaki J; Yoon SH; Mochida I; Ling L
    Nanoscale; 2011 Sep; 3(9):3652-6. PubMed ID: 21805004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media.
    Janda P; Frank O; Bastl Z; Klementová M; Tarábková H; Kavan L
    Nanotechnology; 2010 Mar; 21(9):095707. PubMed ID: 20139490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clean transfer of graphene for isolation and suspension.
    Lin YC; Jin C; Lee JC; Jen SF; Suenaga K; Chiu PW
    ACS Nano; 2011 Mar; 5(3):2362-8. PubMed ID: 21351739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field.
    Srinivasan SG; van Duin AC
    J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material.
    Ashraf A; Wu Y; Wang MC; Aluru NR; Dastgheib SA; Nam S
    Langmuir; 2014 Nov; 30(43):12827-36. PubMed ID: 25310520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental studies of the reactions between hyperthermal O(3P) and graphite: graphene-based direct dynamics and beam-surface scattering approaches.
    Paci JT; Upadhyaya HP; Zhang J; Schatz GC; Minton TK
    J Phys Chem A; 2009 Apr; 113(16):4677-85. PubMed ID: 19301890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.
    Pan S; Aksay IA
    ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knitted graphene-nanoribbon sheet: a mechanically robust structure.
    Wei N; Fan Z; Xu LQ; Zheng YP; Wang HQ; Zheng JC
    Nanoscale; 2012 Feb; 4(3):785-91. PubMed ID: 22170502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive thin films of pristine graphene by solvent interface trapping.
    Woltornist SJ; Oyer AJ; Carrillo JM; Dobrynin AV; Adamson DH
    ACS Nano; 2013 Aug; 7(8):7062-6. PubMed ID: 23879536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centimeter-scale high-resolution metrology of entire CVD-grown graphene sheets.
    Kyle JR; Guvenc A; Wang W; Ghazinejad M; Lin J; Guo S; Ozkan CS; Ozkan M
    Small; 2011 Sep; 7(18):2598-606. PubMed ID: 21815266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of water molecules in the spontaneous release of protein by graphene sheets.
    Liang LJ; Wang Q; Wu T; Sun TY; Kang Y
    Chemphyschem; 2013 Sep; 14(13):2902-9. PubMed ID: 23881843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular simulation of interactions between graphene nanosheets and supercritical CO2.
    Wu B; Yang X
    J Colloid Interface Sci; 2011 Sep; 361(1):1-8. PubMed ID: 21676410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets.
    Chen D; Zhu H; Liu T
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3702-8. PubMed ID: 21067202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.