BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 224142)

  • 21. Effects of cholera toxin on supersensitive and subsensitive rat pineal glands: regulation of sensitivity at multiple sites.
    Zatz M
    Life Sci; 1977 Nov; 21(9):1267-76. PubMed ID: 200812
    [No Abstract]   [Full Text] [Related]  

  • 22. Adrenergic-adenosine 3',5'-monophosphate regulation of serotonin N-acetyltransferase activity and the temporal relationship of serotonin N-acetyltransferase activity synthesis of 3H-N-acetylserotonin and 3H-melatonin in the cultured rat pineal gland.
    Klein D; Weller JL
    J Pharmacol Exp Ther; 1973 Sep; 186(3):516-27. PubMed ID: 4353883
    [No Abstract]   [Full Text] [Related]  

  • 23. Dopamine-beta-hydroxylase: a modulator of beta adrenergic receptor activity.
    Thomas JA; Sakai KK; Holck MI; Marks BH
    Res Commun Chem Pathol Pharmacol; 1980 Jul; 29(1):3-13. PubMed ID: 6250208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the beta adrenergic receptor in the elevation of adenosine cyclic 3',5'-monophosphate and induction of serotonin N-acetyltransferase in rat pineal glands.
    Deguchi T
    Mol Pharmacol; 1973 Mar; 9(2):184-90. PubMed ID: 4145804
    [No Abstract]   [Full Text] [Related]  

  • 25. Adenylate cyclase, cyclic nucleotide phosphodiesterase, and norepinephrine binding in rat heart membranes.
    Moffet FJ; Kidwai AM; Bär HP
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():183-91. PubMed ID: 176694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental appearance of pineal adrenergic-->guanosine 3',5'-monophosphate response is determined by a process down-stream from elevation of intracellular Ca2+: possible involvement of a diffusible factor.
    White BH; Klein DC
    Endocrinology; 1993 Mar; 132(3):1026-34. PubMed ID: 8095011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superinduction of serotonin N-acetyltransferase and supersensitivity of adenyl cyclase to catecholamines in denervated pineal gland.
    Deguchi T; Axelrod J
    Mol Pharmacol; 1973 Sep; 9(5):612-8. PubMed ID: 4363015
    [No Abstract]   [Full Text] [Related]  

  • 28. Estrogen modulation of adrenoceptor responsiveness in the female rat pineal gland: differential expression of intracellular estrogen receptors.
    Sànchez JJ; Abreu P; González-Hernández T; Hernández A; Prieto L; Alonso R
    J Pineal Res; 2004 Aug; 37(1):26-35. PubMed ID: 15230865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclic AMP, adenylate cyclase and cyclic AMP-phosphodiesterase activities in diabetic rat adipocytes.
    Chiappe de Cingolani GE
    Acta Physiol Pharmacol Latinoam; 1986; 36(1):39-46. PubMed ID: 3020875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The phototransduction cascade in the isolated chick pineal gland revisited.
    Holthues H; Vollrath L
    Brain Res; 2004 Mar; 999(2):175-80. PubMed ID: 14759496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alpha 1D L-type Ca(2+)-channel currents: inhibition by a beta-adrenergic agonist and pituitary adenylate cyclase-activating polypeptide (PACAP) in rat pinealocytes.
    Chik CL; Liu QY; Li B; Klein DC; Zylka M; Kim DS; Chin H; Karpinski E; Ho AK
    J Neurochem; 1997 Mar; 68(3):1078-87. PubMed ID: 9048753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system.
    Kebabian JW
    Adv Cyclic Nucleotide Res; 1977; 8():421-508. PubMed ID: 21551
    [No Abstract]   [Full Text] [Related]  

  • 33. Pineal nitric oxide synthase: characteristics, adrenergic regulation and function.
    Lin AM; Schaad NC; Schulz PE; Coon SL; Klein DC
    Brain Res; 1994 Jul; 651(1-2):160-8. PubMed ID: 7522930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pineal adrenergic----cyclic GMP response develops two weeks after the adrenergic----cyclic AMP response.
    Weller JL; Klein DC
    Brain Res Dev Brain Res; 1992 Jul; 68(1):144-7. PubMed ID: 1325876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic AMP-mediated regulation of vascular smooth muscle cell cyclic AMP phosphodiesterase activity.
    Rose RJ; Liu H; Palmer D; Maurice DH
    Br J Pharmacol; 1997 Sep; 122(2):233-40. PubMed ID: 9313930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diurnal rhythm in rat pineal cyclic nucleotide phosphodiesterase activity.
    Minneman KP; Iversen LL
    Nature; 1976 Mar; 260(5546):59-61. PubMed ID: 177878
    [No Abstract]   [Full Text] [Related]  

  • 37. Daily rhythm in pineal phosphodiesterase (PDE) activity reflects adrenergic/3',5'-cyclic adenosine 5'-monophosphate induction of the PDE4B2 variant.
    Kim JS; Bailey MJ; Ho AK; Møller M; Gaildrat P; Klein DC
    Endocrinology; 2007 Apr; 148(4):1475-85. PubMed ID: 17204557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rat pineal adenosine cyclic 3',5'-monophosphate phosphodiesterase activity: modulation in vivo by a beta adrenergic receptor.
    Oleshansky MA; Neff NH
    Mol Pharmacol; 1975 Sep; 11(5):552-7. PubMed ID: 170502
    [No Abstract]   [Full Text] [Related]  

  • 39. Cyclic nucleotides in bacteria.
    Peterkofsky A
    Adv Cyclic Nucleotide Res; 1976; 7():1-48. PubMed ID: 188312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro study of beta-adrenergic receptors.
    Wolfe BB; Harden TK; Molinoff PB
    Annu Rev Pharmacol Toxicol; 1977; 17():575-604. PubMed ID: 17362
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.