BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22414543)

  • 1. Catechins containing a galloyl moiety as potential anti-HIV-1 compounds.
    Zhao Y; Jiang F; Liu P; Chen W; Yi K
    Drug Discov Today; 2012 Jun; 17(11-12):630-5. PubMed ID: 22414543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors.
    Jiang F; Chen W; Yi K; Wu Z; Si Y; Han W; Zhao Y
    Clin Immunol; 2010 Dec; 137(3):347-56. PubMed ID: 20832370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How can (-)-epigallocatechin gallate from green tea prevent HIV-1 infection? Mechanistic insights from computational modeling and the implication for rational design of anti-HIV-1 entry inhibitors.
    Hamza A; Zhan CG
    J Phys Chem B; 2006 Feb; 110(6):2910-7. PubMed ID: 16471901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A natural theaflavins preparation inhibits HIV-1 infection by targeting the entry step: potential applications for preventing HIV-1 infection.
    Yang J; Li L; Tan S; Jin H; Qiu J; Mao Q; Li R; Xia C; Jiang ZH; Jiang S; Liu S
    Fitoterapia; 2012 Mar; 83(2):348-55. PubMed ID: 22155187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of HIV-1 replication and infectivity by expression of a fusion protein, VPR-anti-integrase single-chain variable fragment (SFv): intravirion molecular therapies.
    BouHamdan M; Kulkosky J; Duan LX; Pomerantz RJ
    J Hum Virol; 2000; 3(1):6-15. PubMed ID: 10774802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIV type 1 integrase inhibitors: from basic research to clinical implications.
    Jegede O; Babu J; Di Santo R; McColl DJ; Weber J; Quiñones-Mateu M
    AIDS Rev; 2008; 10(3):172-89. PubMed ID: 18820719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena.
    Mahmood N; Piacente S; Pizza C; Burke A; Khan AI; Hay AJ
    Biochem Biophys Res Commun; 1996 Dec; 229(1):73-9. PubMed ID: 8954085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy.
    Williamson MP; McCormick TG; Nance CL; Shearer WT
    J Allergy Clin Immunol; 2006 Dec; 118(6):1369-74. PubMed ID: 17157668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzophenone glycosides and epicatechin derivatives from Malania oleifera.
    Wu XD; Cheng JT; He J; Zhang XJ; Dong LB; Gong X; Song LD; Zheng YT; Peng LY; Zhao QS
    Fitoterapia; 2012 Sep; 83(6):1068-71. PubMed ID: 22609684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4.
    Zhao Q; Ma L; Jiang S; Lu H; Liu S; He Y; Strick N; Neamati N; Debnath AK
    Virology; 2005 Sep; 339(2):213-25. PubMed ID: 15996703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tricyclononene carboxamide derivatives as novel anti-HIV-1 agents.
    Dong MX; Zhang J; Peng XQ; Lu H; Yun LH; Jiang S; Dai QY
    Eur J Med Chem; 2010 Sep; 45(9):4096-103. PubMed ID: 20598780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling.
    Artico M; Di Santo R; Costi R; Novellino E; Greco G; Massa S; Tramontano E; Marongiu ME; De Montis A; La Colla P
    J Med Chem; 1998 Oct; 41(21):3948-60. PubMed ID: 9767632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway.
    Murase T; Misawa K; Haramizu S; Hase T
    Biochem Pharmacol; 2009 Jul; 78(1):78-84. PubMed ID: 19447226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in novel anti-HIV-1 drugs and drug candidates: 2005-2008].
    Zheng PR; Xue H; Xiao ZY; Liu G
    Yao Xue Xue Bao; 2010 Feb; 45(2):154-64. PubMed ID: 21351426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: a single mode of inhibition for the three HIV enzymes?
    Camarasa MJ; Velázquez S; San-Félix A; Pérez-Pérez MJ; Gago F
    Antiviral Res; 2006 Sep; 71(2-3):260-7. PubMed ID: 16872687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analogues of the calanolide anti-HIV agents. Modification of the trans-10,11-dimethyldihydropyran-12-ol ring (ring C).
    Zembower DE; Liao S; Flavin MT; Xu ZQ; Stup TL; Buckheit RW; Khilevich A; Mar AA; Sheinkman AK
    J Med Chem; 1997 Mar; 40(6):1005-17. PubMed ID: 9083491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of NNRTIs on HIV reverse transcriptase dimerization.
    Tachedjian G; Goff SP
    Curr Opin Investig Drugs; 2003 Aug; 4(8):966-73. PubMed ID: 14508881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of proliferation of human cancer cells and cyclooxygenase enzymes by anthocyanidins and catechins.
    Seeram NP; Zhang Y; Nair MG
    Nutr Cancer; 2003; 46(1):101-6. PubMed ID: 12925310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional targeting of the TGF-βR1 kinase domain and downstream signaling: A role for the galloyl moiety of green tea-derived catechins in ES-2 ovarian clear cell carcinoma.
    Sicard AA; Suarez NG; Cappadocia L; Annabi B
    J Nutr Biochem; 2021 Jan; 87():108518. PubMed ID: 33017609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depsides and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching.
    Neamati N; Hong H; Mazumder A; Wang S; Sunder S; Nicklaus MC; Milne GW; Proksa B; Pommier Y
    J Med Chem; 1997 Mar; 40(6):942-51. PubMed ID: 9083483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.