These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22414560)

  • 1. Retrotransposon insertions in rice gene pairs associated with reduced conservation of gene pairs in grass genomes.
    Krom N; Ramakrishna W
    Genomics; 2012 May; 99(5):308-14. PubMed ID: 22414560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation, rearrangement, and deletion of gene pairs during the evolution of four grass genomes.
    Krom N; Ramakrishna W
    DNA Res; 2010 Dec; 17(6):343-52. PubMed ID: 20864479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrotransposon insertion polymorphisms in six rice genes and their evolutionary history.
    Xu Z; Ramakrishna W
    Gene; 2008 Apr; 412(1-2):50-8. PubMed ID: 18291601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Template switching can create complex LTR retrotransposon insertions in Triticeae genomes.
    Sabot F; Schulman AH
    BMC Genomics; 2007 Jul; 8():247. PubMed ID: 17650302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution.
    Davidson RM; Gowda M; Moghe G; Lin H; Vaillancourt B; Shiu SH; Jiang N; Robin Buell C
    Plant J; 2012 Aug; 71(3):492-502. PubMed ID: 22443345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses.
    Wang Q; Dooner HK
    Plant J; 2012 Oct; 72(2):212-21. PubMed ID: 22621343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Hybaid Lecture. Microcollinearity and segmental duplication in the evolution of grass nuclear genomes.
    Bennetzen JL; SanMiguel P; Liu CN; Chen M; Tikhonov A; Costa de Oliveira A; Jin YK; Avramova Z; Woo SS; Zhang H; Wing RA
    Symp Soc Exp Biol; 1996; 50():1-3. PubMed ID: 9039427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The paleontology of intergene retrotransposons of maize.
    SanMiguel P; Gaut BS; Tikhonov A; Nakajima Y; Bennetzen JL
    Nat Genet; 1998 Sep; 20(1):43-5. PubMed ID: 9731528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae.
    Charles M; Tang H; Belcram H; Paterson A; Gornicki P; Chalhoub B
    Mol Biol Evol; 2009 Jul; 26(7):1651-61. PubMed ID: 19395588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diverged copies of the seed regulatory Opaque-2 gene by a segmental duplication in the progenitor genome of rice, sorghum, and maize.
    Xu JH; Messing J
    Mol Plant; 2008 Sep; 1(5):760-9. PubMed ID: 19825579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the bamboo genome: syntenic relationships to rice and sorghum.
    Gui YJ; Zhou Y; Wang Y; Wang S; Wang SY; Hu Y; Bo SP; Chen H; Zhou CP; Ma NX; Zhang TZ; Fan LJ
    J Integr Plant Biol; 2010 Nov; 52(11):1008-15. PubMed ID: 20977658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes.
    Gao D; Chen J; Chen M; Meyers BC; Jackson S
    PLoS One; 2012; 7(2):e32010. PubMed ID: 22359654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene-containing regions of wheat and the other grass genomes.
    Sandhu D; Gill KS
    Plant Physiol; 2002 Mar; 128(3):803-11. PubMed ID: 11891237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation.
    Bossolini E; Wicker T; Knobel PA; Keller B
    Plant J; 2007 Feb; 49(4):704-17. PubMed ID: 17270010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential regulation of genes by retrotransposons in rice promoters.
    Dhadi SR; Xu Z; Shaik R; Driscoll K; Ramakrishna W
    Plant Mol Biol; 2015 Apr; 87(6):603-13. PubMed ID: 25697955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorphisms and evolutionary history of retrotransposon insertions in rice promoters.
    Xu Z; Rafi S; Ramakrishna W
    Genome; 2011 Aug; 54(8):629-38. PubMed ID: 21823826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent retrotransposon insertions are methylated and phylogenetically clustered in japonica rice (Oryza sativa spp. japonica).
    Vonholdt BM; Takuno S; Gaut BS
    Mol Biol Evol; 2012 Oct; 29(10):3193-203. PubMed ID: 22593226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.