BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22414689)

  • 1. Insights into substrate recognition by the Escherichia coli Orf135 protein through its solution structure.
    Kawasaki K; Kanaba T; Yoneyama M; Murata-Kamiya N; Kojima C; Ito Y; Kamiya H; Mishima M
    Biochem Biophys Res Commun; 2012 Apr; 420(2):263-8. PubMed ID: 22414689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ¹H, ¹³C and ¹⁵N NMR assignments of the Escherichia coli Orf135 protein.
    Kawasaki K; Yoneyama M; Murata-Kamiya N; Harashima H; Kojima C; Ito Y; Kamiya H; Mishima M
    Biomol NMR Assign; 2012 Apr; 6(1):1-4. PubMed ID: 21553121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Important amino acids in the phosphohydrolase module of Escherichia coli Orf135.
    Kamiya H; Iida E; Harashima H
    Biochem Biophys Res Commun; 2004 Oct; 323(3):1063-8. PubMed ID: 15381107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orf135 from Escherichia coli Is a Nudix hydrolase specific for CTP, dCTP, and 5-methyl-dCTP.
    O'Handley SF; Dunn CA; Bessman MJ
    J Biol Chem; 2001 Feb; 276(8):5421-6. PubMed ID: 11053429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid residues involved in substrate recognition of the Escherichia coli Orf135 protein.
    Iida E; Satou K; Mishima M; Kojima C; Harashima H; Kamiya H
    Biochemistry; 2005 Apr; 44(15):5683-9. PubMed ID: 15823026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxidized pyrimidine ribonucleotide, 5-hydroxy-CTP, is hydrolyzed efficiently by the Escherichia coli recombinant Orf135 protein.
    Fujikawa K; Kasai H
    DNA Repair (Amst); 2002 Jul; 1(7):571-6. PubMed ID: 12509230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular basis for the selective recognition of 2-hydroxy-dATP and 8-oxo-dGTP by human MTH1.
    Sakai Y; Furuichi M; Takahashi M; Mishima M; Iwai S; Shirakawa M; Nakabeppu Y
    J Biol Chem; 2002 Mar; 277(10):8579-87. PubMed ID: 11756418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of spontaneous and hydrogen peroxide-induced mutations by a MutT-type nucleotide pool sanitization enzyme, the Escherichia coli Orf135 protein.
    Kamiya H; Iida E; Murata-Kamiya N; Yamamoto Y; Miki T; Harashima H
    Genes Cells; 2003 Dec; 8(12):941-50. PubMed ID: 14750949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into the specificity and catalytic mechanism of mycobacterial nucleotide pool sanitizing enzyme MutT2.
    Singh A; Mohammad Arif S; Biak Sang P; Varshney U; Vijayan M
    J Struct Biol; 2018 Dec; 204(3):449-456. PubMed ID: 30312643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of oxidized nucleotides by the Escherichia coli Orf135 protein.
    Kamiya H; Murata-Kamiya N; Iida E; Harashima H
    Biochem Biophys Res Commun; 2001 Nov; 288(3):499-502. PubMed ID: 11676470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of hypothetical Nudix hydrolase DR0079 from extremely radiation-resistant Deinococcus radiodurans bacterium.
    Buchko GW; Ni S; Holbrook SR; Kennedy MA
    Proteins; 2004 Jul; 56(1):28-39. PubMed ID: 15162484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family.
    Nguyen VN; Park A; Xu A; Srouji JR; Brenner SE; Kirsch JF
    Proteins; 2016 Dec; 84(12):1810-1822. PubMed ID: 27618147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and mechanism of MT-ADPRase, a nudix hydrolase from Mycobacterium tuberculosis.
    Kang LW; Gabelli SB; Cunningham JE; O'Handley SF; Amzel LM
    Structure; 2003 Aug; 11(8):1015-23. PubMed ID: 12906832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures and mechanisms of Nudix hydrolases.
    Mildvan AS; Xia Z; Azurmendi HF; Saraswat V; Legler PM; Massiah MA; Gabelli SB; Bianchet MA; Kang LW; Amzel LM
    Arch Biochem Biophys; 2005 Jan; 433(1):129-43. PubMed ID: 15581572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of the E. coli dihydroneopterin triphosphate pyrophosphatase: a Nudix enzyme involved in folate biosynthesis.
    Gabelli SB; Bianchet MA; Xu W; Dunn CA; Niu ZD; Amzel LM; Bessman MJ
    Structure; 2007 Aug; 15(8):1014-22. PubMed ID: 17698004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of human MTH1, a Nudix family hydrolase that selectively degrades oxidized purine nucleoside triphosphates.
    Mishima M; Sakai Y; Itoh N; Kamiya H; Furuichi M; Takahashi M; Yamagata Y; Iwai S; Nakabeppu Y; Shirakawa M
    J Biol Chem; 2004 Aug; 279(32):33806-15. PubMed ID: 15133035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoramidate pronucleotides: a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins.
    Chou TF; Baraniak J; Kaczmarek R; Zhou X; Cheng J; Ghosh B; Wagner CR
    Mol Pharm; 2007; 4(2):208-17. PubMed ID: 17217311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein.
    Fujikawa K; Kamiya H; Yakushiji H; Fujii Y; Nakabeppu Y; Kasai H
    J Biol Chem; 1999 Jun; 274(26):18201-5. PubMed ID: 10373420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana.
    Ogawa T; Ueda Y; Yoshimura K; Shigeoka S
    J Biol Chem; 2005 Jul; 280(26):25277-83. PubMed ID: 15878881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of human NUDT5 reveal insights into the structural basis of the substrate specificity.
    Zha M; Zhong C; Peng Y; Hu H; Ding J
    J Mol Biol; 2006 Dec; 364(5):1021-33. PubMed ID: 17052728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.