These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 22414781)
21. Microcystin-LR toxicodynamics, induced pathology, and immunohistochemical localization in livers of blue-green algae exposed rainbow trout (oncorhynchus mykiss). Fischer WJ; Hitzfeld BC; Tencalla F; Eriksson JE; Mikhailov A; Dietrich DR Toxicol Sci; 2000 Apr; 54(2):365-73. PubMed ID: 10774818 [TBL] [Abstract][Full Text] [Related]
22. Effects of dietary selenium on the oxidative stress and pathological changes in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom. Atencio L; Moreno I; Jos A; Prieto AI; Moyano R; Blanco A; Cameán AM Toxicon; 2009 Feb; 53(2):269-82. PubMed ID: 19073206 [TBL] [Abstract][Full Text] [Related]
23. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. Ibelings BW; Havens KE Adv Exp Med Biol; 2008; 619():675-732. PubMed ID: 18461789 [TBL] [Abstract][Full Text] [Related]
24. Female zebrafish (Danio rerio) are more vulnerable than males to microcystin-LR exposure, without exhibiting estrogenic effects. Qiao Q; Liu W; Wu K; Song T; Hu J; Huang X; Wen J; Chen L; Zhang X Aquat Toxicol; 2013 Oct; 142-143():272-82. PubMed ID: 24076620 [TBL] [Abstract][Full Text] [Related]
25. Ciliate Nassula sp. grazing on a microcystin-producing cyanobacterium (Planktothrix agardhii): impact on cell growth and in the microcystin fractions. Combes A; Dellinger M; Cadel-six S; Amand S; Comte K Aquat Toxicol; 2013 Jan; 126():435-41. PubMed ID: 23010390 [TBL] [Abstract][Full Text] [Related]
26. Massive fish death associated with the toxic cyanobacterial Planktothrix sp. bloom in the Béni-Haroun Reservoir (Algeria). Benayache NY; Afri-Mehennaoui FZ; Kherief-Nacereddine S; Vo-Quoc B; Hushchyna K; Nguyen-Quang T; Bouaïcha N Environ Sci Pollut Res Int; 2022 Nov; 29(53):80849-80859. PubMed ID: 35729384 [TBL] [Abstract][Full Text] [Related]
27. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.). Palíková M; Krejcí R; Hilscherová K; Babica P; Navrátil S; Kopp R; Bláha L Aquat Toxicol; 2007 Mar; 81(3):312-8. PubMed ID: 17280727 [TBL] [Abstract][Full Text] [Related]
28. Metabolic changes in Medaka fish induced by cyanobacterial exposures in mesocosms: an integrative approach combining proteomic and metabolomic analyses. Sotton B; Paris A; Le Manach S; Blond A; Lacroix G; Millot A; Duval C; Huet H; Qiao Q; Labrut S; Chiappetta G; Vinh J; Catherine A; Marie B Sci Rep; 2017 Jun; 7(1):4051. PubMed ID: 28642462 [TBL] [Abstract][Full Text] [Related]
29. NTP carcinogenesis studies of 2,2-bis(bromomethyl)-1,3-propanediol, nitromethane, and 1,2,3-trichloropropane (cas nos. 3296-90-0, 75-52-5, and 96-18-4) in guppies (Poecilia reticulata) and medaka (Oryzias latipes) (Waterborne Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 2005 Oct; (528):1-190. PubMed ID: 16362062 [TBL] [Abstract][Full Text] [Related]
30. Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus). Ernst B; Hoeger SJ; O'Brien E; Dietrich DR Aquat Toxicol; 2006 Aug; 79(1):31-40. PubMed ID: 16806524 [TBL] [Abstract][Full Text] [Related]
31. Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex. Pawlik-Skowrońska B; Toporowska M; Mazur-Marzec H Environ Sci Pollut Res Int; 2019 Apr; 26(12):11793-11804. PubMed ID: 30815809 [TBL] [Abstract][Full Text] [Related]
32. Effects of microcystin-LR on development of medaka fish embryos (Oryzias latipes). Jacquet C; Thermes V; de Luze A; Puiseux-Dao S; Bernard C; Joly JS; Bourrat F; Edery M Toxicon; 2004 Feb; 43(2):141-7. PubMed ID: 15019473 [TBL] [Abstract][Full Text] [Related]
33. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins. Smutná M; Babica P; Jarque S; Hilscherová K; Maršálek B; Haeba M; Bláha L Toxicon; 2014 Mar; 79():11-8. PubMed ID: 24412459 [TBL] [Abstract][Full Text] [Related]
34. Genotoxicity and cytotoxicity of three microcystin-LR containing cyanobacterial samples from Antioquia, Colombia. Herrera N; Herrera C; Ortíz I; Orozco L; Robledo S; Agudelo D; Echeverri F Toxicon; 2018 Nov; 154():50-59. PubMed ID: 30273704 [TBL] [Abstract][Full Text] [Related]
35. Application of cellular biosensors for detection of atypical toxic bioactivity in microcystin-containing cyanobacterial extracts. Mankiewicz-Boczek J; Karwaciak I; Ratajewski M; Gągała I; Jurczak T; Zalewski M; Pułaski Ł Aquat Toxicol; 2015 Nov; 168():1-10. PubMed ID: 26398929 [TBL] [Abstract][Full Text] [Related]
36. In vitro modulation of intracellular receptor signaling and cytotoxicity induced by extracts of cyanobacteria, complex water blooms and their fractions. Stěpánková T; Ambrožová L; Bláha L; Giesy JP; Hilscherová K Aquat Toxicol; 2011 Oct; 105(3-4):497-507. PubMed ID: 21903046 [TBL] [Abstract][Full Text] [Related]
37. Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure. Lance E; Neffling MR; Gérard C; Meriluoto J; Bormans M Environ Pollut; 2010 Mar; 158(3):674-80. PubMed ID: 19906474 [TBL] [Abstract][Full Text] [Related]
38. Differential oxidative stress responses to pure Microcystin-LR and Microcystin-containing and non-containing cyanobacterial crude extracts on Caco-2 cells. Puerto M; Pichardo S; Jos A; Prieto AI; Sevilla E; Frías JE; Cameán AM Toxicon; 2010; 55(2-3):514-22. PubMed ID: 19825385 [TBL] [Abstract][Full Text] [Related]
39. Histopathology and microcystin distribution in Lymnaea stagnalis (Gastropoda) following toxic cyanobacterial or dissolved microcystin-LR exposure. Lance E; Josso C; Dietrich D; Ernst B; Paty C; Senger F; Bormans M; Gérard C Aquat Toxicol; 2010 Jul; 98(3):211-220. PubMed ID: 20227118 [TBL] [Abstract][Full Text] [Related]
40. Fate of Planktothrix-derived toxins in aquatic food webs: A case study in Lake Mindelsee (Germany). Riehle E; Beach DG; Multrus S; Parmar TP; Martin-Creuzburg D; Dietrich DR Ecotoxicol Environ Saf; 2024 Mar; 273():116154. PubMed ID: 38422789 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]