These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22415019)

  • 1. Influence of body parameters on gastric bioelectric and biomagnetic fields in a realistic volume conductor.
    Kim JH; Pullan AJ; Bradshaw LA; Cheng LK
    Physiol Meas; 2012 Apr; 33(4):545-56. PubMed ID: 22415019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume conductor effects on simulated magnetogastrograms.
    Qiao W; Komuro R; Pullan AJ; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4929-32. PubMed ID: 19963870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomically realistic torso model for studying the relative decay of gastric electrical and magnetic fields.
    Cheng LK; Buist ML; Pullan AJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3158-61. PubMed ID: 17947011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of volume conductor and source configuration on simulated magnetogastrograms.
    Komuro R; Qiao W; Pullan AJ; Cheng LK
    Phys Med Biol; 2010 Nov; 55(22):6881-95. PubMed ID: 21048291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of gastric electrical activity using magnetic field measurements: a simulation study.
    Kim JH; Bradshaw LA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2010 Jan; 38(1):177-86. PubMed ID: 19774463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects--a correlation study.
    Somarajan S; Muszynski ND; Obioha C; Richards WO; Bradshaw LA
    Physiol Meas; 2012 Jul; 33(7):1171-9. PubMed ID: 22735166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity.
    Bradshaw LA; Richards WO; Wikswo JP
    Med Biol Eng Comput; 2001 Jan; 39(1):35-43. PubMed ID: 11214271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of stomach geometry using magnetic source localization.
    Eichler CE; Cheng LK; Paskaranandavadivel N; Alighaleh S; Angeli-Gordon TR; Du P; Bradshaw LA; Avci R
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4234-4237. PubMed ID: 34892158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface current density mapping for identification of gastric slow wave propagation.
    Bradshaw LA; Cheng LK; Richards WO; Pullan AJ
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2131-9. PubMed ID: 19403355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale model of the electrophysiological basis of the human electrogastrogram.
    Du P; O'Grady G; Cheng LK; Pullan AJ
    Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of anisotropic compartments on magnetic field and electric potential distributions generated by artificial current dipoles inside a torso phantom.
    Liehr M; Haueisen J
    Phys Med Biol; 2008 Jan; 53(1):245-54. PubMed ID: 18182700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive assessment of the effects of glucagon on the gastric slow wave.
    Bradshaw LA; Sims JA; Richards WO
    Am J Physiol Gastrointest Liver Physiol; 2007 Nov; 293(5):G1029-38. PubMed ID: 17884978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source localization for gastric electrical activity using simulated magnetogastrographic data.
    Avci R; Paskaranandavadivel N; Calder S; Du P; Bradshaw LA; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2336-2339. PubMed ID: 31946368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Reconstruction of 3D Stomach Geometry using Magnetic Field Source Localization.
    Avci R; Paskaranandavadivel N; Eichler CE; Lam BYC; Angeli TR; Bradshaw LA; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2376. PubMed ID: 33018484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroanatomical mapping of the stomach with simultaneous biomagnetic measurements.
    Drake CE; Cheng LK; Muszynski ND; Somarajan S; Paskaranandavadivel N; Angeli-Gordon TR; Du P; Bradshaw LA; Avci R
    Comput Biol Med; 2023 Oct; 165():107384. PubMed ID: 37633085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polygonally Meshed Dipole Model Simulation of the Electrical Field Produced by the Stomach and Intestines.
    Kawano M; Emoto T
    Comput Math Methods Med; 2020; 2020():2971358. PubMed ID: 33178331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach.
    Allescher HD; Abraham-Fuchs K; Dunkel RE; Classen M
    Dig Dis Sci; 1998 Apr; 43(4):683-93. PubMed ID: 9558020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomagnetic signatures of uncoupled gastric musculature.
    Bradshaw LA; Irimia A; Sims JA; Richards WO
    Neurogastroenterol Motil; 2009 Jul; 21(7):778-e50. PubMed ID: 19222760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.