These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22415554)

  • 1. Delineating compartmentalized control of phenylpropanoid metabolism.
    Colquhoun TA
    J Chem Ecol; 2012 Mar; 38(3):230. PubMed ID: 22415554
    [No Abstract]   [Full Text] [Related]  

  • 2. Bioconversion of cinnamic acid derivatives by Schizophyllum commune.
    Nimura Y; Tsujiyama S; Ueno M
    J Gen Appl Microbiol; 2010 Oct; 56(5):381-7. PubMed ID: 21099134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a chimeric biosynthetic pathway for the de novo biosynthesis of rosmarinic acid in Escherichia coli.
    Bloch SE; Schmidt-Dannert C
    Chembiochem; 2014 Nov; 15(16):2393-401. PubMed ID: 25205019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of phenylpropanoid amides in recombinant Escherichia coli.
    Kang K; Back K
    Metab Eng; 2009 Jan; 11(1):64-8. PubMed ID: 18805501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme reactions with phenolic compounds: formation of hydroxystyrenes through the decarboxylation of 4-hydroxycinnamic acids by Aerobacter.
    FINKLE BJ; LEWIS JC; CORSE JW; LUNDIN RE
    J Biol Chem; 1962 Sep; 237():2926-31. PubMed ID: 13893003
    [No Abstract]   [Full Text] [Related]  

  • 6. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.).
    Schiavon M; Pizzeghello D; Muscolo A; Vaccaro S; Francioso O; Nardi S
    J Chem Ecol; 2010 Jun; 36(6):662-9. PubMed ID: 20480387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of p-coumaric acid to caffeic acid and of p-hydroxyphenylacetic acid to 3,4-dihydroxyphenylacetic acid by Alnus rubra.
    Li CY
    Lloydia; 1977; 40(3):298-30. PubMed ID: 895387
    [No Abstract]   [Full Text] [Related]  

  • 8. Decarboxylation of substituted cinnamic acids by enterobacteria: the influence on beer flavour.
    Lindsay RF; Priest FG
    J Appl Bacteriol; 1975 Oct; 39(2):181-7. PubMed ID: 1194135
    [No Abstract]   [Full Text] [Related]  

  • 9. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli.
    Vargas-Tah A; Martínez LM; Hernández-Chávez G; Rocha M; Martínez A; Bolívar F; Gosset G
    Microb Cell Fact; 2015 Jan; 14():6. PubMed ID: 25592545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [LIPOXYGENASES AND PLANT CELL METABOLISM REGULATION].
    Pokotylo IV; Kolesnikov YS; Derevyanchuk MV; Kharitonenko AI; Kravets VS
    Ukr Biochem J; 2015; 87(2):41-55. PubMed ID: 26255338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The action of hydrogen peroxide on the hydroxylation of p-coumaric acid by spinach-beet phenolase.
    Vaughan PF; McIntyre RJ
    Biochem J; 1975 Dec; 151(3):759-62. PubMed ID: 814897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of phenols from aromatic substrates by plant and animal mono-oxygenases: the effect of adjacent deuteriums on the magnitude of the NIH shift of tritium.
    Reed DJ; Vimmerstedt J; Jerina DM; Daly JW
    Arch Biochem Biophys; 1973 Feb; 154(2):642-7. PubMed ID: 4691507
    [No Abstract]   [Full Text] [Related]  

  • 13. The challenges of cellular compartmentalization in plant metabolic engineering.
    Heinig U; Gutensohn M; Dudareva N; Aharoni A
    Curr Opin Biotechnol; 2013 Apr; 24(2):239-46. PubMed ID: 23246154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Relationship between anatomical structure and metabolism of plant tissues. I. Differences between the qualitative and quantitative composition of phenolic substances of apple explants and that of callus and cells produced by the culture].
    Phan CT; Macheix JJ
    Rev Can Biol; 1979 Mar; 38(1):17-25. PubMed ID: 441452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 9,10-Dihydrophenanthrenes as phytoalexins of Orchidaceae. Biosynthetic studies in vitro and in vivo proving the route from L-phenylalanine to dihydro-m-coumaric acid, dihydrostilbene and dihydrophenanthrenes.
    Fritzemeier KH; Kindl H
    Eur J Biochem; 1983 Jul; 133(3):545-50. PubMed ID: 6861741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of aromatic acids in plant organelles.
    Kindl H
    Hoppe Seylers Z Physiol Chem; 1972 Feb; 353(2):133-4. PubMed ID: 5027694
    [No Abstract]   [Full Text] [Related]  

  • 17. The action of o-dihydric phenols in the hydroxylation of p-coumaric acid by a phenolase from leaves of spinach beet (Beta vulgaris L.).
    Vaughan PF; Butt VS
    Biochem J; 1970 Aug; 119(1):89-94. PubMed ID: 4991965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies on the hydroxylation of p-coumaric acid to caffeic acid by spinach-beet phenolase.
    McIntyre RJ; Vaughan PF
    Biochem J; 1975 Aug; 149(2):447-61. PubMed ID: 170916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-pressure liquid chromatography for assaying several plant phenolic enzymes.
    Blume DE; Saunders JA
    Anal Biochem; 1981 Jun; 114(1):97-102. PubMed ID: 7283159
    [No Abstract]   [Full Text] [Related]  

  • 20. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize.
    Oliveira DM; Mota TR; Salatta FV; Sinzker RC; Končitíková R; Kopečný D; Simister R; Silva M; Goeminne G; Morreel K; Rencoret J; Gutiérrez A; Tryfona T; Marchiosi R; Dupree P; Del Río JC; Boerjan W; McQueen-Mason SJ; Gomez LD; Ferrarese-Filho O; Dos Santos WD
    Plant Cell Environ; 2020 Sep; 43(9):2172-2191. PubMed ID: 32441772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.