BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22415640)

  • 1. Quantification of mass transfer during spheronisation.
    Koester M; Thommes M
    AAPS PharmSciTech; 2012 Jun; 13(2):493-7. PubMed ID: 22415640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. II. Influence of drug and filler type.
    Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2006 May; 63(1):68-75. PubMed ID: 16325384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. I. Influence of type and fraction of filler.
    Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2006 May; 63(1):59-67. PubMed ID: 16326085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic evaluations regarding interparticular mass transfer in spheronization.
    Koester M; Willemsen E; Krueger C; Thommes M
    Int J Pharm; 2012 Jul; 431(1-2):84-9. PubMed ID: 22546294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of pellets via extrusion-spheronisation without the incorporation of microcrystalline cellulose: a critical review.
    Dukić-Ott A; Thommes M; Remon JP; Kleinebudde P; Vervaet C
    Eur J Pharm Biopharm; 2009 Jan; 71(1):38-46. PubMed ID: 18771727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of drying on extruded pellets based on kappa-carrageenan.
    Thommes M; Blaschek W; Kleinebudde P
    Eur J Pharm Sci; 2007 Jun; 31(2):112-8. PubMed ID: 17448646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immediate release pellets with lipid binders obtained by solvent-free cold extrusion.
    Krause J; Thommes M; Breitkreutz J
    Eur J Pharm Biopharm; 2009 Jan; 71(1):138-44. PubMed ID: 18805483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of partially hydrolysed polyvinyl alcohol for the production of high drug-loaded sustained release pellets via extrusion-spheronisation and coating: In vitro and in vivo evaluation.
    Verstraete G; De Jaeghere W; Vercruysse J; Grymonpré W; Vanhoorne V; Stauffer F; De Beer T; Bezuijen A; Remon JP; Vervaet C
    Int J Pharm; 2017 Jan; 517(1-2):88-95. PubMed ID: 27919698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twin product/process approach for pellet preparation by extrusion/spheronisation. Part I: hydro-textural aspects.
    Galland S; Ruiz T; Delalonde M
    Int J Pharm; 2007 Jun; 337(1-2):239-45. PubMed ID: 17317048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary assessment of carrageenan as excipient for extrusion/spheronisation.
    Bornhöft M; Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2005 Jan; 59(1):127-31. PubMed ID: 15567309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the pelletization mechanism by extrusion/spheronization.
    Koester M; Thommes M
    AAPS PharmSciTech; 2010 Dec; 11(4):1549-51. PubMed ID: 21042960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of drying technique on extrusion-spheronisation granules and tablet properties.
    Song B; Rough SL; Wilson DI
    Int J Pharm; 2007 Mar; 332(1-2):38-44. PubMed ID: 17071030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical properties of granulating liquids and their influence on microcrystalline cellulose pellets obtained by extrusion-spheronisation technology.
    Dreu R; Sirca J; Pintye-Hodi K; Burjan T; Planinsek O; Srcic S
    Int J Pharm; 2005 Mar; 291(1-2):99-111. PubMed ID: 15707736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrusion-spheronisation of microcrystalline cellulose pastes using a non-aqueous liquid binder.
    Mascia S; Seiler C; Fitzpatrick S; Wilson DI
    Int J Pharm; 2010 Apr; 389(1-2):1-9. PubMed ID: 20123008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evaluation of formulations for the preparation of pellets with high drug loading by extrusion/spheronization.
    Podczeck F; Knight P
    Pharm Dev Technol; 2006; 11(3):263-74. PubMed ID: 16895837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-aqueous formulations for ram and screen extrusion-spheronisation.
    Zhang M; Rough SL; Ward R; Seiler C; Wilson DI
    Int J Pharm; 2019 Apr; 560():394-405. PubMed ID: 30763682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of starch-based pellets via extrusion/spheronisation.
    Dukić A; Mens R; Adriaensens P; Foreman P; Gelan J; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2007 Apr; 66(1):83-94. PubMed ID: 17045467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel lab-scale screen extruder for studying extrusion-spheronisation.
    Zhang M; Mascia S; Rough SL; Ward R; Seiler C; Wilson DI
    Int J Pharm; 2013 Oct; 455(1-2):285-97. PubMed ID: 23871735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the direct compression aid Ludiflash(®) for the preparation of pellets via wet extrusion/spheronization.
    Roblegg E; Schrank S; Griesbacher M; Radl S; Zimmer A; Khinast J
    Drug Dev Ind Pharm; 2011 Oct; 37(10):1231-43. PubMed ID: 21438702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of pellets manufactured by wet extrusion/spheronization process using kappa-carrageenan: effect of process parameters.
    Thommes M; Kleinebudde P
    AAPS PharmSciTech; 2007 Nov; 8(4):E95. PubMed ID: 18181555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.