These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 22415700)
1. Interaction of salivary and midgut proteins of Helicoverpa armigera with soybean trypsin inhibitor. Upadhyay SK; Chandrashekar K Protein J; 2012 Mar; 31(3):259-64. PubMed ID: 22415700 [TBL] [Abstract][Full Text] [Related]
2. The interactions between soybean trypsin inhibitor and delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera larva. Zhang JH; Wang CZ; Qin JD J Invertebr Pathol; 2000 May; 75(4):259-66. PubMed ID: 10843832 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of digestive serine proteases from inhibitor-resistant Helicoverpa zea larval midgut. Volpicella M; Cordewener J; Jongsma MA; Gallerani R; Ceci LR; Beekwilder J J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Mar; 833(1):26-32. PubMed ID: 16269275 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of silica nanoparticle mediated delivery of protease inhibitor in tomato plants and its effect on insect pest Helicoverpa armigera. Bapat G; Zinjarde S; Tamhane V Colloids Surf B Biointerfaces; 2020 Sep; 193():111079. PubMed ID: 32361552 [TBL] [Abstract][Full Text] [Related]
5. Proteolytic Activity in the Midgut of Helicoverpa armigera (Noctuidae: Lepidoptera) Larvae Fed on Wild Relatives of Chickpea, Cicer arietinum. Golla SK; Rajasekhar P; Akbar SMD; Sharma HC J Econ Entomol; 2018 Sep; 111(5):2409-2415. PubMed ID: 29924350 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor. Erlandson MA; Hegedus DD; Baldwin D; Noakes A; Toprak U Arch Insect Biochem Physiol; 2010 Oct; 75(2):70-91. PubMed ID: 20824821 [TBL] [Abstract][Full Text] [Related]
7. The impact of ingested potato type II inhibitors on the production of the major serine proteases in the gut of Helicoverpa armigera. Stevens JA; Dunse KM; Guarino RF; Barbeta BL; Evans SC; West JA; Anderson MA Insect Biochem Mol Biol; 2013 Feb; 43(2):197-208. PubMed ID: 23247047 [TBL] [Abstract][Full Text] [Related]
8. Larval development and proteolytic activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) exposed to different soybean protease inhibitors. Mendonça EG; de Almeida Barros R; Cordeiro G; da Silva CR; Campos WG; de Oliveira JA; de Almeida Oliveira MG Arch Insect Biochem Physiol; 2020 Jan; 103(1):e21637. PubMed ID: 31625209 [TBL] [Abstract][Full Text] [Related]
9. Identification of six chymotrypsin cDNAs from larval midguts of Helicoverpa zea and Agrotis ipsilon feeding on the soybean (Kunitz) trypsin inhibitor. Mazumdar-Leighton S; Broadway RM Insect Biochem Mol Biol; 2001 Apr; 31(6-7):633-44. PubMed ID: 11267902 [TBL] [Abstract][Full Text] [Related]
10. Integrated Transcriptomic and Proteomic Analyses Suggest the Participation of Endogenous Protease Inhibitors in the Regulation of Protease Gene Expression in Lomate PR; Dewangan V; Mahajan NS; Kumar Y; Kulkarni A; Wang L; Saxena S; Gupta VS; Giri AP Mol Cell Proteomics; 2018 Jul; 17(7):1324-1336. PubMed ID: 29661852 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional induction of diverse midgut trypsins in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Mazumdar-Leighton S; Broadway RM Insect Biochem Mol Biol; 2001 Apr; 31(6-7):645-57. PubMed ID: 11267903 [TBL] [Abstract][Full Text] [Related]
12. Adaptive regulation of digestive serine proteases in the larval midgut of Helicoverpa armigera in response to a plant protease inhibitor. Kuwar SS; Pauchet Y; Vogel H; Heckel DG Insect Biochem Mol Biol; 2015 Apr; 59():18-29. PubMed ID: 25662099 [TBL] [Abstract][Full Text] [Related]
13. Characterization of major midgut proteinase cDNAs from Helicoverpa armigera larvae and changes in gene expression in response to four proteinase inhibitors in the diet. Gatehouse LN; Shannon AL; Burgess EP; Christeller JT Insect Biochem Mol Biol; 1997 Nov; 27(11):929-44. PubMed ID: 9501417 [TBL] [Abstract][Full Text] [Related]
14. Podborer (Helicoverpa armigera Hübn.) does not show specific adaptations in gut proteinases to dietary Cicer arietinum Kunitz proteinase inhibitor. Srinivasan A; Chougule NP; Giri AP; Gatehouse JA; Gupta VS J Insect Physiol; 2005 Nov; 51(11):1268-76. PubMed ID: 16140320 [TBL] [Abstract][Full Text] [Related]
15. Bio-potency of a 21 kDa Kunitz-type trypsin inhibitor from Tamarindus indica seeds on the developmental physiology of H. armigera. Pandey PK; Jamal F Pestic Biochem Physiol; 2014 Nov; 116():94-102. PubMed ID: 25454525 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-terminal glutamate residues. Bown DP; Gatehouse JA Eur J Biochem; 2004 May; 271(10):2000-11. PubMed ID: 15128309 [TBL] [Abstract][Full Text] [Related]
17. Midgut proteases of the cardamom shoot and capsule borer Conogethes punctiferalis (Lepidoptera: Pyralidae) and their interaction with aprotinin. Josephrajkumar A; Chakrabarty R; Thomas G Bull Entomol Res; 2006 Feb; 96(1):91-8. PubMed ID: 16441909 [TBL] [Abstract][Full Text] [Related]
18. Decreased Cry1Ac activation by midgut proteases associated with Cry1Ac resistance in Helicoverpa zea. Zhang M; Wei J; Ni X; Zhang J; Jurat-Fuentes JL; Fabrick JA; Carrière Y; Tabashnik BE; Li X Pest Manag Sci; 2019 Apr; 75(4):1099-1106. PubMed ID: 30264537 [TBL] [Abstract][Full Text] [Related]