BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22415775)

  • 1. Determination of single cell surface protein expression using a tagless microfluidic method.
    Kumar R; Vellanki SH; Smith R; Wieder R
    Lab Chip; 2012 May; 12(9):1646-55. PubMed ID: 22415775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Flow Cytometry for Single-Cell Protein Analysis.
    Wu M; Singh AK
    Methods Mol Biol; 2015; 1346():69-83. PubMed ID: 26542716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection.
    Salehi-Reyhani A; Kaplinsky J; Burgin E; Novakova M; deMello AJ; Templer RH; Parker P; Neil MA; Ces O; French P; Willison KR; Klug D
    Lab Chip; 2011 Apr; 11(7):1256-61. PubMed ID: 21347466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic array with cellular valving for single cell co-culture.
    Frimat JP; Becker M; Chiang YY; Marggraf U; Janasek D; Hengstler JG; Franzke J; West J
    Lab Chip; 2011 Jan; 11(2):231-7. PubMed ID: 20978708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and fast microfluidic approach of same-single-cell analysis (SASCA) for the study of multidrug resistance modulation in cancer cells.
    Li X; Chen Y; Li PC
    Lab Chip; 2011 Apr; 11(7):1378-84. PubMed ID: 21327253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel single-cell analysis microfluidic platform.
    van den Brink FT; Gool E; Frimat JP; Bomer J; van den Berg A; Le Gac S
    Electrophoresis; 2011 Nov; 32(22):3094-100. PubMed ID: 22025223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis.
    Saadi W; Wang SJ; Lin F; Jeon NL
    Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
    Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y
    Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic platform for sequential ligand labeling and cell binding analysis.
    Sui G; Lee CC; Kamei K; Li HJ; Wang JY; Wang J; Herschman HR; Tseng HR
    Biomed Microdevices; 2007 Jun; 9(3):301-5. PubMed ID: 17195108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC; Hur JY; Cho HS; Park SH; Suh KY
    Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroactive microwell arrays for highly efficient single-cell trapping and analysis.
    Kim SH; Yamamoto T; Fourmy D; Fujii T
    Small; 2011 Nov; 7(22):3239-47. PubMed ID: 21932278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction: why analyze single cells?
    Di Carlo D; Tse HT; Gossett DR
    Methods Mol Biol; 2012; 853():1-10. PubMed ID: 22323135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External force-assisted cell positioning inside microfluidic devices.
    Rhee SW; Taylor AM; Cribbs DH; Cotman CW; Jeon NL
    Biomed Microdevices; 2007 Feb; 9(1):15-23. PubMed ID: 17091393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device.
    Kim MJ; Lee SC; Pal S; Han E; Song JM
    Lab Chip; 2011 Jan; 11(1):104-14. PubMed ID: 21060932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic systems for live cell imaging.
    Lee P; Gaige T; Hung P
    Methods Cell Biol; 2011; 102():77-103. PubMed ID: 21704836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell electroporation using microfluidic devices.
    Le Gac S; van den Berg A
    Methods Mol Biol; 2012; 853():65-82. PubMed ID: 22323141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.