These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 22415783)
1. Examining the potential of plasma-assisted pretreated wheat straw for enzyme production by Trichoderma reesei. Rodriguez-Gomez D; Lehmann L; Schultz-Jensen N; Bjerre AB; Hobley TJ Appl Biochem Biotechnol; 2012 Apr; 166(8):2051-63. PubMed ID: 22415783 [TBL] [Abstract][Full Text] [Related]
2. Mixed cultivation of Trichoderma reesei and Aspergillus ochraceus for improved cellulase production. Chadha BS; Garcha HS Acta Microbiol Hung; 1992; 39(1):61-7. PubMed ID: 1632200 [TBL] [Abstract][Full Text] [Related]
3. Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application. Pandya JJ; Gupte A Bioprocess Biosyst Eng; 2012 Jun; 35(5):769-79. PubMed ID: 22271252 [TBL] [Abstract][Full Text] [Related]
4. Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw. Grujić M; Dojnov B; Potočnik I; Atanasova L; Duduk B; Srebotnik E; Druzhinina IS; Kubicek CP; Vujčić Z World J Microbiol Biotechnol; 2019 Nov; 35(12):194. PubMed ID: 31776792 [TBL] [Abstract][Full Text] [Related]
5. The enzymatic hydrolysis and fermentation of pretreated wheat straw to ethanol. Szczodrak J Biotechnol Bioeng; 1988 Sep; 32(6):771-6. PubMed ID: 18587784 [TBL] [Abstract][Full Text] [Related]
6. Cellulase production by Trichoderma reesei using sawdust hydrolysate. Lo CM; Zhang Q; Lee P; Ju LK Appl Biochem Biotechnol; 2005; 121-124():561-73. PubMed ID: 15920263 [TBL] [Abstract][Full Text] [Related]
7. Strain improvement for enhanced production of cellulase in Trichoderma viride. Xu F; Wang J; Chen S; Qin W; Yu Z; Zhao H; Xing X; Li H Prikl Biokhim Mikrobiol; 2011; 47(1):61-5. PubMed ID: 21438472 [TBL] [Abstract][Full Text] [Related]
8. Chemical and biological properties of wheat soil in response to paddy straw incorporation and its biodegradation by fungal inoculants. Gaind S; Nain L Biodegradation; 2007 Aug; 18(4):495-503. PubMed ID: 17106757 [TBL] [Abstract][Full Text] [Related]
9. Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor. Michelin M; Polizeli Mde L; Ruzene DS; Silva DP; Vicente AA; Jorge JA; Terenzi HF; Teixeira JA Appl Biochem Biotechnol; 2012 Jan; 166(2):336-47. PubMed ID: 22072141 [TBL] [Abstract][Full Text] [Related]
10. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Xin F; Geng A Appl Biochem Biotechnol; 2010 Sep; 162(1):295-306. PubMed ID: 19707729 [TBL] [Abstract][Full Text] [Related]
11. Fungal cellulase/xylanase production and corresponding hydrolysis using pretreated corn stover as substrates. Zhang L; Wang X; Ruan Z; Liu Y; Niu X; Yue Z; Li Z; Liao W; Liu Y Appl Biochem Biotechnol; 2014 Jan; 172(2):1045-54. PubMed ID: 24142357 [TBL] [Abstract][Full Text] [Related]
12. Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Pathak P; Bhardwaj NK; Singh AK Appl Biochem Biotechnol; 2014 Apr; 172(8):3776-97. PubMed ID: 24574249 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: a detailed comparison using convenient kinetic analysis. Monschein M; Reisinger C; Nidetzky B Bioresour Technol; 2013 Jan; 128():679-87. PubMed ID: 23220402 [TBL] [Abstract][Full Text] [Related]
14. Biological pretreatment of rice straw with Streptomyces griseorubens JSD-1 and its optimized production of cellulase and xylanase for improved enzymatic saccharification efficiency. Zhang D; Luo Y; Chu S; Zhi Y; Wang B; Zhou P Prep Biochem Biotechnol; 2016 Aug; 46(6):575-85. PubMed ID: 26443946 [TBL] [Abstract][Full Text] [Related]
15. Effects of rhamnolipid on the cellulase and xylanase in hydrolysis of wheat straw. Wang HY; Fan BQ; Li CH; Liu S; Li M Bioresour Technol; 2011 Jun; 102(11):6515-21. PubMed ID: 21478013 [TBL] [Abstract][Full Text] [Related]
16. Simplifying cellulase production by using environmental selection pressures and recycling substrate. Lever M; Hoa G; Cord-Ruwisch R Environ Technol; 2013; 34(1-4):471-5. PubMed ID: 23530361 [TBL] [Abstract][Full Text] [Related]
17. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Delabona Pda S; Farinas CS; da Silva MR; Azzoni SF; Pradella JG Bioresour Technol; 2012 Mar; 107():517-21. PubMed ID: 22221990 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Latifian M; Hamidi-Esfahani Z; Barzegar M Bioresour Technol; 2007 Dec; 98(18):3634-7. PubMed ID: 17207619 [TBL] [Abstract][Full Text] [Related]
19. The use of cellulases from a beta-glucosidase-hyperproducing mutant of Trichoderma reesei in simultaneous saccharification and fermentation of wheat straw. Szczodrak J Biotechnol Bioeng; 1989 Apr; 33(9):1112-6. PubMed ID: 18588028 [TBL] [Abstract][Full Text] [Related]
20. Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation. Lever M; Ho G; Cord-Ruwisch R Bioresour Technol; 2010 Sep; 101(18):7094-8. PubMed ID: 20430612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]