BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22415846)

  • 1. Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques.
    Bilgili AV
    Environ Monit Assess; 2013 Jan; 185(1):777-95. PubMed ID: 22415846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques.
    Triki Fourati H; Bouaziz M; Benzina M; Bouaziz S
    Environ Monit Assess; 2017 Apr; 189(4):177. PubMed ID: 28332082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The geostatistic-based spatial distribution variations of soil salts under long-term wastewater irrigation.
    Wu W; Yin S; Liu H; Niu Y; Bao Z
    Environ Monit Assess; 2014 Oct; 186(10):6747-56. PubMed ID: 25127658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy Assessment of Kriging, artificial neural network, and a hybrid approach integrating spatial and terrain data in estimating and mapping of soil organic carbon.
    Kılıç M; Gündoğan R; Günal H; Cemek B
    PLoS One; 2022; 17(5):e0268658. PubMed ID: 35617376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of spatial variability in some soil properties as related to soil salinity and alkalinity in Bafra plain in northern Turkey.
    Cemek B; Güler M; Kiliç K; Demir Y; Arslan H
    Environ Monit Assess; 2007 Jan; 124(1-3):223-34. PubMed ID: 16957860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geostatistical interpolation of available copper in orchard soil as influenced by planting duration.
    Fu C; Zhang H; Tu C; Li L; Luo Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):52-63. PubMed ID: 27798802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].
    Yang SH; Zhang HT; Guo L; Ren Y
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1649-56. PubMed ID: 26572015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancillary information improves kriging on soil organic carbon data for a typical karst peak cluster depression landscape.
    Zhang W; Wang K; Chen H; He X; Zhang J
    J Sci Food Agric; 2012 Mar; 92(5):1094-102. PubMed ID: 22297926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and uncertainty assessment on geostatistical simulation of soil salinity in a coastal farmland using auxiliary variable.
    Yao RJ; Yang JS; Shao HB
    Environ Monit Assess; 2013 Jun; 185(6):5151-64. PubMed ID: 23064945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.
    Ahmed ZU; Panaullah GM; DeGloria SD; Duxbury JM
    Sci Total Environ; 2011 Dec; 412-413():324-35. PubMed ID: 22055452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the quality of the Harran Plain soils under long-term cultivation.
    Bilgili AV; Küçük Ç; Van Es HM
    Environ Monit Assess; 2017 Aug; 189(9):460. PubMed ID: 28823014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Soil Heavy Metal Distribution Using Geographically Weighted Regression Kriging.
    Fu P; Yang Y; Zou Y
    Bull Environ Contam Toxicol; 2022 Feb; 108(2):344-350. PubMed ID: 34741183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
    Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modeling of soil antibiotics.
    Shi WJ; Yue TX; Du ZP; Wang Z; Li XW
    Sci Total Environ; 2016 Feb; 543(Pt A):609-619. PubMed ID: 26613514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-irrigation degradation of land and environmental resources in the Harran plain, southeastern Turkey.
    Bilgili AV; Yeşilnacar İ; Akihiko K; Nagano T; Aydemir A; Hızlı HS; Bilgili A
    Environ Monit Assess; 2018 Oct; 190(11):660. PubMed ID: 30345489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the concentration of antimony in agricultural soil using data fusion, terrain attributes combined with regression kriging.
    Agyeman PC; Kingsley J; Kebonye NM; Khosravi V; Borůvka L; Vašát R
    Environ Pollut; 2023 Jan; 316(Pt 1):120697. PubMed ID: 36403872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial analysis of soil salinity and soil structural stability in a semiarid region of New South Wales, Australia.
    Odeh IO; Onus A
    Environ Manage; 2008 Aug; 42(2):265-78. PubMed ID: 18414941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dataset characteristics influence the performance of different interpolation methods for soil salinity spatial mapping.
    Fazeli Sangani M; Namdar Khojasteh D; Owens G
    Environ Monit Assess; 2019 Oct; 191(11):684. PubMed ID: 31659465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial assessment of soil organic carbon and physicochemical properties in a horticultural orchard at arid zone of India using geostatistical approaches.
    Singh A; Santra P; Kumar M; Panwar N; Meghwal PR
    Environ Monit Assess; 2016 Sep; 188(9):529. PubMed ID: 27553943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.