These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22416234)

  • 21. Antioxidants in skeletal muscle physiology, a radically different approach.
    Carmen Gomez-Cabrera M
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S1-2. PubMed ID: 26461276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An "enigmatic" L-carnosine (β-alanyl-L-histidine)? Cell proliferative activity as a fundamental property of a natural dipeptide inherent to traditional antioxidant, anti-aging biological activities: balancing and a hormonally correct agent, novel patented oral therapy dosage formulation for mobility, skeletal muscle power and functional performance, hypothalamic-pituitary- brain relationship in health, aging and stress studies.
    Babizhayev MA; Yegorov YE
    Recent Pat Drug Deliv Formul; 2015; 9(1):1-64. PubMed ID: 25524476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?
    Ihsan M; Watson G; Abbiss CR
    Sports Med; 2016 Aug; 46(8):1095-109. PubMed ID: 26888646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of free radicals and antioxidant signaling in skeletal muscle health and pathology.
    Ji LL; Gomez-Cabrera MC; Vina J
    Infect Disord Drug Targets; 2009 Aug; 9(4):428-44. PubMed ID: 19689384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response to exercise in older adults who take supplements of antioxidants and/or omega-3 polyunsaturated fatty acids: A systematic review.
    Pastor R; Tur JA
    Biochem Pharmacol; 2020 Mar; 173():113649. PubMed ID: 31586588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of curcumin on performance and post-exercise recovery.
    Campbell MS; Carlini NA; Fleenor BS
    Crit Rev Food Sci Nutr; 2021; 61(7):1152-1162. PubMed ID: 32319320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intramuscular mechanisms of overtraining.
    Cheng AJ; Jude B; Lanner JT
    Redox Biol; 2020 Aug; 35():101480. PubMed ID: 32179050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review.
    Brown DR; Gough LA; Deb SK; Sparks SA; McNaughton LR
    Front Nutr; 2017; 4():76. PubMed ID: 29404334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative stress and aging. Role of exercise and its influences on antioxidant systems.
    Ji LL; Leeuwenburgh C; Leichtweis S; Gore M; Fiebig R; Hollander J; Bejma J
    Ann N Y Acad Sci; 1998 Nov; 854():102-17. PubMed ID: 9928424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compression garments and exercise: garment considerations, physiology and performance.
    MacRae BA; Cotter JD; Laing RM
    Sports Med; 2011 Oct; 41(10):815-43. PubMed ID: 21923201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidant supplementation enhances the exercise-induced increase in mitochondrial uncoupling protein 3 and endothelial nitric oxide synthase mRNA content in human skeletal muscle.
    Hellsten Y; Nielsen JJ; Lykkesfeldt J; Bruhn M; Silveira L; Pilegaard H; Bangsbo J
    Free Radic Biol Med; 2007 Aug; 43(3):353-61. PubMed ID: 17602951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondria-Targeted Antioxidants and Skeletal Muscle Function.
    Broome SC; Woodhead JST; Merry TL
    Antioxidants (Basel); 2018 Aug; 7(8):. PubMed ID: 30096848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis.
    Strobel NA; Peake JM; Matsumoto A; Marsh SA; Coombes JS; Wadley GD
    Med Sci Sports Exerc; 2011 Jun; 43(6):1017-24. PubMed ID: 21085043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical role for free radicals on sprint exercise-induced CaMKII and AMPKα phosphorylation in human skeletal muscle.
    Morales-Alamo D; Ponce-González JG; Guadalupe-Grau A; Rodríguez-García L; Santana A; Cusso R; Guerrero M; Dorado C; Guerra B; Calbet JA
    J Appl Physiol (1985); 2013 Mar; 114(5):566-77. PubMed ID: 23288553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of pomegranate supplementation on exercise performance and post-exercise recovery in healthy adults: a systematic review.
    Ammar A; Bailey SJ; Chtourou H; Trabelsi K; Turki M; Hökelmann A; Souissi N
    Br J Nutr; 2018 Dec; 120(11):1201-1216. PubMed ID: 30350760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does antioxidant vitamin supplementation protect against muscle damage?
    McGinley C; Shafat A; Donnelly AE
    Sports Med; 2009; 39(12):1011-32. PubMed ID: 19902983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skeletal muscle signaling, metabolism, and performance during sprint exercise in severe acute hypoxia after the ingestion of antioxidants.
    Morales-Alamo D; Guerra B; Ponce-González JG; Guadalupe-Grau A; Santana A; Martin-Rincon M; Gelabert-Rebato M; Cadefau JA; Cusso R; Dorado C; Calbet JAL
    J Appl Physiol (1985); 2017 Nov; 123(5):1235-1245. PubMed ID: 28819003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle-derived ROS and thiol regulation in muscle fatigue.
    Ferreira LF; Reid MB
    J Appl Physiol (1985); 2008 Mar; 104(3):853-60. PubMed ID: 18006866
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.