BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 22416775)

  • 41. Cutaneous T-cell lymphomas: Focusing on novel agents in relapsed and refractory disease.
    Argnani L; Broccoli A; Zinzani PL
    Cancer Treat Rev; 2017 Dec; 61():61-69. PubMed ID: 29102679
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging drugs in cutaneous T-cell lymphomas.
    Dummer R
    Expert Opin Emerg Drugs; 2005 May; 10(2):381-92. PubMed ID: 15934873
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HDAC inhibitors: a potential new category of anti-tumor agents.
    Pan LN; Lu J; Huang B
    Cell Mol Immunol; 2007 Oct; 4(5):337-43. PubMed ID: 17976313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer.
    Thurn KT; Thomas S; Moore A; Munster PN
    Future Oncol; 2011 Feb; 7(2):263-83. PubMed ID: 21345145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Histone deacetylase inhibitors: biology and mechanism of action.
    Mehnert JM; Kelly WK
    Cancer J; 2007; 13(1):23-9. PubMed ID: 17464243
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors.
    Slingerland M; Guchelaar HJ; Gelderblom H
    Anticancer Drugs; 2014 Feb; 25(2):140-9. PubMed ID: 24185382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vorinostat for the treatment of bullous pemphigoid in the setting of advanced, refractory cutaneous T-cell lymphoma.
    Gardner JM; Evans KG; Goldstein S; Kim EJ; Vittorio CC; Rook AH
    Arch Dermatol; 2009 Sep; 145(9):985-8. PubMed ID: 19770436
    [No Abstract]   [Full Text] [Related]  

  • 48. Romidepsin and Azacitidine Synergize in their Epigenetic Modulatory Effects to Induce Apoptosis in CTCL.
    Rozati S; Cheng PF; Widmer DS; Fujii K; Levesque MP; Dummer R
    Clin Cancer Res; 2016 Apr; 22(8):2020-31. PubMed ID: 26660520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Histone deacetylation in epigenetics: an attractive target for anticancer therapy.
    Mai A; Massa S; Rotili D; Cerbara I; Valente S; Pezzi R; Simeoni S; Ragno R
    Med Res Rev; 2005 May; 25(3):261-309. PubMed ID: 15717297
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The biology of HDAC in cancer: the nuclear and epigenetic components.
    Hagelkruys A; Sawicka A; Rennmayr M; Seiser C
    Handb Exp Pharmacol; 2011; 206():13-37. PubMed ID: 21879444
    [TBL] [Abstract][Full Text] [Related]  

  • 51. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications.
    Khan O; La Thangue NB
    Immunol Cell Biol; 2012 Jan; 90(1):85-94. PubMed ID: 22124371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure and property based design, synthesis and biological evaluation of γ-lactam based HDAC inhibitors.
    Choi E; Lee C; Park JE; Seo JJ; Cho M; Kang JS; Kim HM; Park SK; Lee K; Han G
    Bioorg Med Chem Lett; 2011 Feb; 21(4):1218-21. PubMed ID: 21256006
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combination treatment modalities in cutaneous T-cell lymphoma (CTCL).
    Guitart J
    Semin Oncol; 2006 Feb; 33(1 Suppl 3):S17-20. PubMed ID: 16516671
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The development and potential clinical utility of biomarkers for HDAC inhibitors.
    Shi B; Xu W
    Drug Discov Ther; 2013 Aug; 7(4):129-36. PubMed ID: 24071574
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of type-specific anticancer histone deacetylase inhibitors: road to success.
    Noureen N; Rashid H; Kalsoom S
    Cancer Chemother Pharmacol; 2010 Sep; 66(4):625-33. PubMed ID: 20401613
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Benzothiazole-containing hydroxamic acids as histone deacetylase inhibitors and antitumor agents.
    Oanh DT; Hai HV; Park SH; Kim HJ; Han BW; Kim HS; Hong JT; Han SB; Hue VT; Nam NH
    Bioorg Med Chem Lett; 2011 Dec; 21(24):7509-12. PubMed ID: 22036991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of novel histone deacetylase inhibitors.
    Siliphaivanh P; Harrington P; Witter DJ; Otte K; Tempest P; Kattar S; Kral AM; Fleming JC; Deshmukh SV; Harsch A; Secrist PJ; Miller TA
    Bioorg Med Chem Lett; 2007 Aug; 17(16):4619-24. PubMed ID: 17555962
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Progress in Histone Deacetylase Inhibitors as Anticancer Agents.
    Cappellacci L; Perinelli DR; Maggi F; Grifantini M; Petrelli R
    Curr Med Chem; 2020; 27(15):2449-2493. PubMed ID: 30332940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing the apoptotic and therapeutic effects of HDAC inhibitors.
    Frew AJ; Johnstone RW; Bolden JE
    Cancer Lett; 2009 Aug; 280(2):125-33. PubMed ID: 19359091
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of histone deacetylase inhibitors for cancer treatment.
    Marchion D; Münster P
    Expert Rev Anticancer Ther; 2007 Apr; 7(4):583-98. PubMed ID: 17428177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.