These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 224169)
21. Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials. Barker JL; Nicoll RA; Padjen A J Physiol; 1975 Mar; 245(3):537-48. PubMed ID: 167156 [TBL] [Abstract][Full Text] [Related]
22. A study of the interaction between motoneurones in the frog spinal cord. Grinnell AD J Physiol; 1966 Feb; 182(3):612-48. PubMed ID: 5943003 [TBL] [Abstract][Full Text] [Related]
23. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord. Kremer E; Lev-Tov A J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230 [TBL] [Abstract][Full Text] [Related]
24. K+ changes in the extracellular space of the spinal cord and their physiological role. Syková E J Exp Biol; 1981 Dec; 95():93-109. PubMed ID: 6278046 [TBL] [Abstract][Full Text] [Related]
25. Activity-related extracellular potassium transients in the neonatal rat spinal cord: an in vitro study. Walton KD; Chesler M Neuroscience; 1988 Jun; 25(3):983-95. PubMed ID: 2457188 [TBL] [Abstract][Full Text] [Related]
26. Effects of kynurenate on root potentials evoked by synaptic activity and amino acids in the frog spinal cord. Elmslie KS; Yoshikami D Brain Res; 1985 Mar; 330(2):265-72. PubMed ID: 2985194 [TBL] [Abstract][Full Text] [Related]
27. Rate of rise of the cumulative depolarization evoked by repetitive stimulation of small-caliber afferents is a predictor of action potential windup in rat spinal neurons in vitro. Sivilotti LG; Thompson SW; Woolf CJ J Neurophysiol; 1993 May; 69(5):1621-31. PubMed ID: 8389833 [TBL] [Abstract][Full Text] [Related]
28. Small-caliber afferent inputs produce a heterosynaptic facilitation of the synaptic responses evoked by primary afferent A-fibers in the neonatal rat spinal cord in vitro. Thompson SW; Woolf CJ; Sivilotti LG J Neurophysiol; 1993 Jun; 69(6):2116-28. PubMed ID: 8350135 [TBL] [Abstract][Full Text] [Related]
29. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission. Krív N; Syková E; Vyklický L J Physiol; 1975 Jul; 249(1):167-82. PubMed ID: 168359 [TBL] [Abstract][Full Text] [Related]
30. Tachykinin-mediated modulation of sensory neurons, interneurons, and synaptic transmission in the lamprey spinal cord. Parker D; Grillner S J Neurophysiol; 1996 Dec; 76(6):4031-9. PubMed ID: 8985898 [TBL] [Abstract][Full Text] [Related]
31. Toxin I, but not 4-aminopyridine, blocks the late inhibitory component of the dorsal root reflex in an isolated preparation of rat spinal cord. Bagust J; Zhang L; Owen D Brain Res; 1997 Oct; 773(1-2):181-9. PubMed ID: 9409719 [TBL] [Abstract][Full Text] [Related]
32. Hyperpolarization of frog primary afferent fibres caused by activation of a sodium pump. Davidoff RA; Hackman JC J Physiol; 1980 May; 302():297-309. PubMed ID: 6967973 [TBL] [Abstract][Full Text] [Related]
33. Some actions of catechol on synaptic transmission in the isolated spinal cord of the frog. Hackman JC; Ross DB; Davidoff RA Brain Res; 1978 Nov; 157(1):47-61. PubMed ID: 212166 [TBL] [Abstract][Full Text] [Related]
34. The action of chlorphenesin carbamate on the frog spinal cord. Aihara H; Kurachi M; Nakane S; Sasajima M; Ohzeki M Jpn J Pharmacol; 1980 Feb; 30(1):29-36. PubMed ID: 6967526 [TBL] [Abstract][Full Text] [Related]
35. Bicuculline and the frog spinal cord. Pixner DB Br J Pharmacol; 1974 Sep; 52(1):35-9. PubMed ID: 4155985 [TBL] [Abstract][Full Text] [Related]
36. [Neurochemical and ionic mechanisms of dorsal root potentials in the spinal cord of the immature rat]. Abramets II; Bokholdin IuA; Skrizhevskiĭ IG Neirofiziologiia; 1984; 16(6):796-800. PubMed ID: 6097823 [TBL] [Abstract][Full Text] [Related]
37. Electrophysiological properties of neonatal rat motoneurones studied in vitro. Fulton BP; Walton K J Physiol; 1986 Jan; 370():651-78. PubMed ID: 3958988 [TBL] [Abstract][Full Text] [Related]
38. Intrinsic optical signals in the dorsal horn of rat spinal cord slices elicited by brief repetitive stimulation. Asai T; Kusudo K; Ikeda H; Murase K Eur J Neurosci; 2002 Jun; 15(11):1737-46. PubMed ID: 12081653 [TBL] [Abstract][Full Text] [Related]
39. Excitatory transmitters, ventral root potentials and [K+]o in the isolated frog leg-spinal cord preparation. Holohean AM; Vega JL; Hackman JC; Davidoff RA Neurosci Lett; 1988 Dec; 95(1-3):173-8. PubMed ID: 2465509 [TBL] [Abstract][Full Text] [Related]
40. Zinc modulates primary afferent fiber-evoked responses of ventral roots in neonatal rat spinal cord in vitro. Otsuguro K; Ohta T; Ito S Neuroscience; 2006; 138(1):281-91. PubMed ID: 16360285 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]