These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22417319)

  • 41. Cavitands with introverted functionality stabilize tetrahedral intermediates.
    Hooley RJ; Restorp P; Iwasawa T; Rebek J
    J Am Chem Soc; 2007 Dec; 129(50):15639-43. PubMed ID: 18004852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complementary Binding in Urea-Based Self-Folding Cavitands.
    Lledó A
    Org Lett; 2015 Aug; 17(15):3770-3. PubMed ID: 26181724
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemically responsive supramolecular assemblies of pyrene-beta-cyclodextrin dimer.
    Ogoshi T; Hashizume M; Yamagishi TA; Nakamoto Y
    Langmuir; 2010 Mar; 26(5):3169-73. PubMed ID: 19894753
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Redox-switchable resorcin[4]arene cavitands: molecular grippers.
    Pochorovski I; Ebert MO; Gisselbrecht JP; Boudon C; Schweizer WB; Diederich F
    J Am Chem Soc; 2012 Sep; 134(36):14702-5. PubMed ID: 22906195
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recognition of guests by water-stabilized cavitand hosts.
    Lledó A; Hooley RJ; Rebek J
    Org Lett; 2008 Sep; 10(17):3669-71. PubMed ID: 18656944
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of a 4:1:4 supramolecular assembly of neutral TiiiiPO cavitands and tetrakis(N-methylpyridinium)porphyrin iodide.
    De Zorzi R; Dubessy B; Mulatier JC; Geremia S; Randaccio L; Dutasta JP
    J Org Chem; 2007 Jun; 72(12):4528-31. PubMed ID: 17500565
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular recognition and self-assembly special feature: Encapsulated-guest rotation in a self-assembled heterocapsule directed toward a supramolecular gyroscope.
    Kitagawa H; Kobori Y; Yamanaka M; Yoza K; Kobayashi K
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10444-8. PubMed ID: 19416810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Orientational isomerism controlled by the difference in electronic environments of a self-assembling heterodimeric capsule.
    Kobayashi K; Kitagawa R; Yamada Y; Yamanaka M; Suematsu T; Sei Y; Yamaguchi K
    J Org Chem; 2007 Apr; 72(9):3242-6. PubMed ID: 17397223
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water-stabilized cavitands.
    Far AR; Shivanyuk A; Rebek J
    J Am Chem Soc; 2002 Mar; 124(12):2854-5. PubMed ID: 11902859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microwave-assisted synthesis of a new series of resorcin[4]arene cavitand-capped porphyrin capsules.
    McKay MG; Cwele T; Friedrich HB; Maguire GE
    Org Biomol Chem; 2009 Oct; 7(19):3958-68. PubMed ID: 19763298
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparative scale and convenient synthesis of a water-soluble, deep cavitand.
    Mosca S; Yu Y; Rebek J
    Nat Protoc; 2016 Aug; 11(8):1371-87. PubMed ID: 27388554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Resorcinarenes with 2-benzimidazolone bridges: self-aggregation, self-assembled dimeric capsules, and guest encapsulation.
    Ebbing MH; Villa MJ; Valpuesta JM; Prados P; de Mendoza J
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):4962-6. PubMed ID: 11959947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A light controlled cavitand wall regulates guest binding.
    Berryman OB; Sather AC; Rebek J
    Chem Commun (Camb); 2011 Jan; 47(2):656-8. PubMed ID: 21116523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of terbium(III) on the binding of aromatic guests with sodium taurocholate aggregates.
    Pace TC; Souza SP; Zhang HT; Bohne C
    Photochem Photobiol Sci; 2011 Oct; 10(10):1568-77. PubMed ID: 21750813
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation of pyrene dimer radical cation in DNA reflecting DNA dynamics in the time range of 1 micros to 1 ms.
    Kawai K; Miyamoto K; Tojo S; Majima T
    J Am Chem Soc; 2003 Jan; 125(4):912-5. PubMed ID: 12537488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploiting cavities in supramolecular gels.
    Foster JA; Steed JW
    Angew Chem Int Ed Engl; 2010 Sep; 49(38):6718-24. PubMed ID: 20715220
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ITC and NMR Analysis of the Encapsulation of Fatty Acids within a Water-Soluble Cavitand and its Dimeric Capsule.
    Wang K; Sokkalingam P; Gibb BC
    Supramol Chem; 2016; 28(1-2):84-90. PubMed ID: 26997853
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Guest recognition in a partially bridged deep cavitand.
    Busseron E; Rebek J
    Org Lett; 2010 Nov; 12(21):4828-31. PubMed ID: 20923195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensing vase-to-kite switching of cavitands by sum-frequency vibrational spectroscopy.
    Pagliusi P; Lagugné-Labarthet F; Shenoy DK; Dalcanale E; Shen YR
    J Am Chem Soc; 2006 Oct; 128(39):12610-1. PubMed ID: 17002330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ferrocene derivatives included in a water-soluble cavitand: are they electroinactive?
    Podkoscielny D; Hooley RJ; Rebek J; Kaifer AE
    Org Lett; 2008 Jul; 10(13):2865-8. PubMed ID: 18537255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.