These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 22417394)
1. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. Du J; Lu J; Wu Q; Jing C J Hazard Mater; 2012 May; 215-216():152-8. PubMed ID: 22417394 [TBL] [Abstract][Full Text] [Related]
2. Long-term treatment issues with chromite ore processing residue (COPR): Cr(6+) reduction and heave. Moon DH; Wazne M; Dermatas D; Christodoulatos C; Sanchez AM; Grubb DG; Chrysochoou M; Kim MG J Hazard Mater; 2007 May; 143(3):629-35. PubMed ID: 17275184 [TBL] [Abstract][Full Text] [Related]
3. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate. Jagupilla SC; Moon DH; Wazne M; Christodoulatos C; Kim MG J Hazard Mater; 2009 Aug; 168(1):121-8. PubMed ID: 19272700 [TBL] [Abstract][Full Text] [Related]
4. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Cao J; Zhang WX J Hazard Mater; 2006 May; 132(2-3):213-9. PubMed ID: 16621279 [TBL] [Abstract][Full Text] [Related]
5. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR). Wazne M; Jagupilla SC; Moon DH; Jagupilla SC; Christodoulatos C; Kim MG J Hazard Mater; 2007 May; 143(3):620-8. PubMed ID: 17276597 [TBL] [Abstract][Full Text] [Related]
6. Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5). Moon DH; Wazne M; Jagupilla SC; Christodoulatos C; Kim MG; Koutsospyros A Sci Total Environ; 2008 Jul; 399(1-3):2-10. PubMed ID: 18486197 [TBL] [Abstract][Full Text] [Related]
7. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue. Jagupilla SC; Wazne M; Moon DH Chemosphere; 2015 Oct; 136():95-101. PubMed ID: 25966327 [TBL] [Abstract][Full Text] [Related]
8. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Elzinga EJ; Cirmo A J Hazard Mater; 2010 Nov; 183(1-3):145-54. PubMed ID: 20674158 [TBL] [Abstract][Full Text] [Related]
9. Leaching mechanisms of Cr(VI) from chromite ore processing residue. Wazne M; Jagupilla SC; Moon DH; Christodoulatos C; Koutsospyros A J Environ Qual; 2008; 37(6):2125-34. PubMed ID: 18948466 [TBL] [Abstract][Full Text] [Related]
10. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment. Tinjum JM; Benson CH; Edil TB Sci Total Environ; 2008 Feb; 391(1):13-25. PubMed ID: 18067949 [TBL] [Abstract][Full Text] [Related]
11. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior. Zhang DL; Zhang MY; Zhang CH; Sun YJ; Sun X; Yuan XZ Environ Sci Technol; 2016 Mar; 50(6):3111-8. PubMed ID: 26862886 [TBL] [Abstract][Full Text] [Related]
12. A new method for the treatment of chromite ore processing residues. Wang T; He M; Pan Q J Hazard Mater; 2007 Oct; 149(2):440-4. PubMed ID: 17482759 [TBL] [Abstract][Full Text] [Related]
13. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue. Watts MP; Coker VS; Parry SA; Pattrick RA; Thomas RA; Kalin R; Lloyd JR Appl Geochem; 2015 Mar; 54():27-42. PubMed ID: 26109747 [TBL] [Abstract][Full Text] [Related]
14. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism. Li Y; Cundy AB; Feng J; Fu H; Wang X; Liu Y J Environ Manage; 2017 May; 192():100-106. PubMed ID: 28157612 [TBL] [Abstract][Full Text] [Related]
15. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS Li Y; Liang J; Yang Z; Wang H; Liu Y Sci Total Environ; 2019 Mar; 658():315-323. PubMed ID: 30577025 [TBL] [Abstract][Full Text] [Related]
16. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes. Singh R; Misra V; Singh RP Bull Environ Contam Toxicol; 2012 Feb; 88(2):210-4. PubMed ID: 21996721 [TBL] [Abstract][Full Text] [Related]
17. Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue. Whittleston RA; Stewart DI; Mortimer RJ; Tilt ZC; Brown AP; Geraki K; Burke IT J Hazard Mater; 2011 Oct; 194():15-23. PubMed ID: 21871726 [TBL] [Abstract][Full Text] [Related]
18. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue. Chrysochoou M; Dermatas D J Hazard Mater; 2007 Mar; 141(2):370-7. PubMed ID: 16842911 [TBL] [Abstract][Full Text] [Related]
19. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide. Li J; Chen Z; Shen J; Wang B; Fan L Chemosphere; 2015 Sep; 134():159-65. PubMed ID: 25929874 [TBL] [Abstract][Full Text] [Related]
20. Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue. Geelhoed JS; Meeussen JC; Roe MJ; Hillier S; Thomas RP; Farmer JG; Paterson E Environ Sci Technol; 2003 Jul; 37(14):3206-13. PubMed ID: 12901671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]