These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 22417400)
1. Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water. Muhammad S; Shukla PR; Tadé MO; Wang S J Hazard Mater; 2012 May; 215-216():183-90. PubMed ID: 22417400 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst. Valkaj KM; Katovic A; Zrncević S J Hazard Mater; 2007 Jun; 144(3):663-7. PubMed ID: 17416460 [TBL] [Abstract][Full Text] [Related]
3. Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions. Saputra E; Zhang H; Liu Q; Sun H; Wang S Chemosphere; 2016 Sep; 159():351-358. PubMed ID: 27318450 [TBL] [Abstract][Full Text] [Related]
4. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts. Liou RM; Chen SH; Huang CH; Hung MY; Chang JS; Lai CL Water Sci Technol; 2010; 61(6):1489-98. PubMed ID: 20351428 [TBL] [Abstract][Full Text] [Related]
5. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol. Liou RM; Chen SH J Hazard Mater; 2009 Dec; 172(1):498-506. PubMed ID: 19640643 [TBL] [Abstract][Full Text] [Related]
6. Characteristics of titania supported copper oxide catalysts for wet air oxidation of phenol. Kim KH; Ihm SK J Hazard Mater; 2007 Jul; 146(3):610-6. PubMed ID: 17513049 [TBL] [Abstract][Full Text] [Related]
7. Graphene oxide as an effective catalyst for wet air oxidation of phenol. Yang S; Cui Y; Sun Y; Yang H J Hazard Mater; 2014 Sep; 280():55-62. PubMed ID: 25127389 [TBL] [Abstract][Full Text] [Related]
8. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol. Calleja G; Melero JA; Martínez F; Molina R Water Res; 2005 May; 39(9):1741-50. PubMed ID: 15899272 [TBL] [Abstract][Full Text] [Related]
9. Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst. Bo LL; Zhang YB; Quan X; Zhao B J Hazard Mater; 2008 May; 153(3):1201-6. PubMed ID: 18006223 [TBL] [Abstract][Full Text] [Related]
10. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. Kuleyin A J Hazard Mater; 2007 Jun; 144(1-2):307-15. PubMed ID: 17112660 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneous activation of Oxone by Co(x)Fe(3-x)O4 nanocatalysts for degradation of rhodamine B. Su S; Guo W; Leng Y; Yi C; Ma Z J Hazard Mater; 2013 Jan; 244-245():736-42. PubMed ID: 23195597 [TBL] [Abstract][Full Text] [Related]
12. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Saputra E; Muhammad S; Sun H; Ang HM; Tadé MO; Wang S Environ Sci Technol; 2013 Jun; 47(11):5882-7. PubMed ID: 23651050 [TBL] [Abstract][Full Text] [Related]
13. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent. Liu WM; Hu YQ; Tu ST J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394 [TBL] [Abstract][Full Text] [Related]
14. Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution. Liang H; Ting YY; Sun H; Ang HM; Tadé MO; Wang S J Colloid Interface Sci; 2012 Apr; 372(1):58-62. PubMed ID: 22336327 [TBL] [Abstract][Full Text] [Related]
15. Photo-degradation of acid green dye over Co-ZSM-5 catalysts prepared by incipient wetness impregnation technique. El-Bahy ZM; Mohamed MM; Zidan FI; Thabet MS J Hazard Mater; 2008 May; 153(1-2):364-71. PubMed ID: 17904732 [TBL] [Abstract][Full Text] [Related]
16. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance. Parvas M; Haghighi M; Allahyari S Environ Technol; 2014; 35(9-12):1140-9. PubMed ID: 24701909 [TBL] [Abstract][Full Text] [Related]
17. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Liou RM; Chen SH; Hung MY; Hsu CS; Lai JY Chemosphere; 2005 Mar; 59(1):117-25. PubMed ID: 15698652 [TBL] [Abstract][Full Text] [Related]
18. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol. Yang S; Wang X; Yang H; Sun Y; Liu Y J Hazard Mater; 2012 Sep; 233-234():18-24. PubMed ID: 22819477 [TBL] [Abstract][Full Text] [Related]
19. Efficient elimination of caffeine from water using Oxone activated by a magnetic and recyclable cobalt/carbon nanocomposite derived from ZIF-67. Lin KY; Chen BC Dalton Trans; 2016 Feb; 45(8):3541-51. PubMed ID: 26804184 [TBL] [Abstract][Full Text] [Related]
20. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study. Senturk HB; Ozdes D; Gundogdu A; Duran C; Soylak M J Hazard Mater; 2009 Dec; 172(1):353-62. PubMed ID: 19656623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]