BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22417413)

  • 1. Structural stability of myosin rod from silver carp as affected by season.
    Yuan C; Wang X; Chen S; Qu Y; Konno K
    J Food Sci; 2011; 76(5):C686-93. PubMed ID: 22417413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of myosin subfragment-1 of summer and winter silver carp (Hypophthalmichthys molitrix) muscle.
    Zheng L; Yu K; Yuan C; Wang X; Chen S; Kimura I; Konno K
    J Food Sci; 2012 Sep; 77(9):C914-20. PubMed ID: 22900620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniquely stable 40 kDa subfragment-2 in carp myosin.
    Takahashi TT; Takahashi M; Konno K
    J Agric Food Chem; 2005 Mar; 53(6):2242-7. PubMed ID: 15769163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential scanning calorimetry and CD spectrometry of acclimation temperature-associated types of carp light meromyosin.
    Nakaya M; Kakinuma M; Watabe S; Ooi T
    Biochemistry; 1997 Jul; 36(30):9179-84. PubMed ID: 9230050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protease-susceptible sites and properties of fragments of aortic smooth-muscle myosin.
    King L; Jiang MJ; Huang TS; Sheu GC
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):511-8. PubMed ID: 8526864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the thermal stability of acclimation temperature-associated types of carp myosin and its rod on differential scanning calorimetry.
    Nakaya M; Watabe S; Ooi T
    Biochemistry; 1995 Mar; 34(9):3114-20. PubMed ID: 7893723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cDNA cloning and characterization of temperature-acclimation-associated light meromyosins from grass carp fast skeletal muscle.
    Wang SY; Tao Y; Liang CS; Fukushima H; Watabe S
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Feb; 149(2):378-87. PubMed ID: 18055241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential scanning calorimetric study of the thermal unfolding of myosin rod, light meromyosin, and subfragment 2.
    Lopez-Lacomba JL; Guzman M; Cortijo M; Mateo PL; Aguirre R; Harvey SC; Cheung HC
    Biopolymers; 1989 Dec; 28(12):2143-59. PubMed ID: 2690963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal and temperature-induced changes in myosin heavy chain composition of crucian carp hearts.
    Vornanen M
    Am J Physiol; 1994 Dec; 267(6 Pt 2):R1567-73. PubMed ID: 7810767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-state thermal unfolding of a long dimeric coiled-coil: the Acanthamoeba myosin II rod.
    Zolkiewski M; Redowicz MJ; Korn ED; Hammer JA; Ginsburg A
    Biochemistry; 1997 Jun; 36(25):7876-83. PubMed ID: 9201932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast skeletal myosin isoforms in thermally acclimated carp.
    Watabe S; Hwang GC; Nakaya M; Guo XF; Okamoto Y
    J Biochem; 1992 Jan; 111(1):113-22. PubMed ID: 1535074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filament-forming domain of carp dorsal myosin rod.
    Kato S; Konno K
    J Biochem; 1993 Jan; 113(1):43-7. PubMed ID: 8454573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melting of myosin rod as revealed by electron microscopy. II. Effects of temperature and pH on length and stability of myosin rod and its fragments.
    Walzthöny D; Eppenberger HM; Ueno H; Harrington WF; Wallimann T
    Eur J Cell Biol; 1986 Jun; 41(1):38-43. PubMed ID: 3792336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophysical characterization of tilapia myosin and its subfragments.
    Reed ZH; Park JW
    J Food Sci; 2011 Sep; 76(7):C1050-5. PubMed ID: 22417542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature induced denaturation of myosin: evidence of structural alterations of myosin subfragment-1.
    Liu J; Puolanne E; Ertbjerg P
    Meat Sci; 2014 Oct; 98(2):124-8. PubMed ID: 24927048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal unfolding of three acclimation temperature-associated isoforms of carp light meromyosin expressed by recombinant DNAs.
    Kakinuma M; Nakaya M; Hatanaka A; Hirayama Y; Watabe S; Maeda K; Ooi T; Suzuki S
    Biochemistry; 1998 May; 37(18):6606-13. PubMed ID: 9572878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological properties of fast skeletal myosin rod and light meromyosin from walleye pollack and white croaker: contribution of myosin fragments to thermal gel formation.
    Fukushima H; Satoh Y; Yoon SH; Togashi M; Nakaya M; Watabe S
    J Agric Food Chem; 2005 Nov; 53(23):9193-8. PubMed ID: 16277422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal denaturation of tilapia myosin and its subunits as affected by constantly increasing temperature.
    Reed ZH; Guilford W; Park JW
    J Food Sci; 2011 Sep; 76(7):C1018-24. PubMed ID: 22417538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential scanning calorimetry and circular dichroism spectrometry of walleye pollack myosin and light meromyosin.
    Togashi M; Kakinuma M; Nakaya M; Ooi T; Watabe S
    J Agric Food Chem; 2002 Aug; 50(17):4803-11. PubMed ID: 12166963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in polymer formation through disulfide bonding of recombinant light meromyosin between white croaker and walleye pollack and their possible relation to species specific differences in thermal unfolding.
    Fukushima H; Yoon SH; Watabe S
    J Agric Food Chem; 2003 Jul; 51(14):4089-95. PubMed ID: 12822952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.